
Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 913 Copyright @ 2020 Authors

SECURITY CLOUD STORAGE BASED ON RLWE (RING LEARNING

WITH ERRORS)

1Namana.Murali Krishna, 2Sujeeth T

1Professor, Dept of CSE, Vignan Institute of Technology and Science, Hyderabad – 508284.
2Assistant Professor, Dept of CSE, Siddhartha Educational Academy Group of Institutions, Tirupati - 517501.

1muralinamana@gmail.com , 2sujeeth.2304@gmail.com

ABSTRACT

With the rapid development of cloud storage and

quantum computing, ensuring the integrity of

outsourced data for data owners becomes a serious

concern. To address this problem, existing

protocols for auditing cloud storage are usually

based on post-quantum cryptographies to check

data integrity. Nevertheless, these protocols employ

heavy cryptographic operations to construct the

data tags, making their efficiency low and

extensibility poor. In this paper, we take a new

perspective and explore the possibility of designing

secure cloud storage (SCS) protocols based on the

ring learning with errors (RLWE) problem. Instead

of matrix variables, our protocol only utilizes

vector variables to generate data block tags so that

it has a much lower computational complexity. We

then give a strict security proof of cheating

resistance against the malicious cloud and privacy

guarantee against the curious third-party auditor.

We also extend the proposed protocol to support

data dynamics and batch auditing for more

application scenarios. As a further contribution, we

summarize a systematic framework for designing

lattice-based SCS protocols. Finally, exhaustive

performance analysis and comparison are provided

to verify that the proposed protocol outperforms the

existing lattice-based SCS protocols in terms of

both operational efficiency and functional

extensibility.

1. INTRODUCTION

In our paper Cloud storage is becoming a common

practice thanks to the rising popularity of cloud

computing [1]. However, outsourcing data to the

cloud also brings new security challenges. Firstly,

despite strong security measures taken by cloud

services providers (CSP), outsourced data still

faces a large amount of internal and external

attacks [2] [3]. Secondly, CSPs are motivated to

discard data that are rarely accessed to reclaim

storage for more profit [4] [5]. Thirdly, in case of

data loss incidents, CSPs have incentives to hide

the truth and cheat that the outsourced data are still

undamaged for their own benefits [6] [7].

Therefore, it is important for data owners to have

the ability to check the integrity of the outsourced

data. A secure cloud storage (SCS) protocol should

satisfy several substantial requirements [8]– [11].

1) Public auditing. An SCS protocol should support

public auditing. Specifically, the integrity auditing

task can be outsourced to a third-party auditor

(TPA), which is more professional and fairer in

case of data loss. 2) High Efficiency. The operating

efficiency of an SCS protocol should be as high as

possible. 3) Strong Extensibility. An SCS protocol

should be easily extended to support other common

functions, such as data dynamics and batch

auditing. In summary, it is better for an SCS

protocol to involve only light cryptographic

operations, and support public auditing, data

dynamics, and batch auditing. In addition, an SCS

protocol also requires that data owners have the

ability to verify data integrity without physically

possessing the actual data, which can hugely

relieve the userside storage burden.

Previous SCS protocols always take advantage of

classic cryptographies, such as RSA and discrete

logarithm problem. Specifically, these protocols

explore classic cryptographies to generate the

outsourced data and the integrity proof, which are

utilized to perform the data auditing task. However,

these SCS protocols can no longer work well in

front of quantum attacks. To address this problem,

the research direction is shifting to design SCS

protocols based on post-quantum cryptographies.

As we know, lattice cryptography is one of the

most famous post-quantum cryptographies, which

is widely accepted to be secure against quantum

attacks [12] [13]. Thus, the anti-quantum

computing SCS protocols are usually designed

based on lattice cryptographies [14]- [17].

Nevertheless, all of the existing lattice-based

protocols compute data tags using matrix variables,

which results in low efficiency and poor

extensibility. In stark contrast, in this paper, we

propose to design the SCS protocol based on

equality checking in the ring learning with error

(RLWE) problem, utilizing only vector variables to

generate data tags. Our design has both conceptual

and technical novelty. We first propose an SCS

protocol based on RLWE. Then, we present two

security games to formalize a security model of

SCS protocols. These two games are designed

based on cheating resistance against the malicious

cloud and privacy guanrantee against the curious

TPA respectively, which captures the security

mailto:muralinamana@gmail.com
mailto:sujeeth.2304@gmail.com

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 914 Copyright @ 2020 Authors

intuition in practice. Then, we propose an efficient

algorithm to support data dynamics, which includes

inserting, deleting and modifying user data.

Specifically, we utilize a constant-size cache to

maintain the relationship between the indices of

data blocks and their tags. In this way, tag re-

computation after each data update can be avoided

and then data dynamics can be handled efficiently.

Through aggregating multiple verification

equations into a single one, the proposed SCS

protocol can efficiently support batch auditing, i.e.,

the TPA can audit multiple users’ data at the same

time. Finaly, we establish a generic framework for

designing SCS protocols based on lattice

cryptographies by exploring the intrinsic

relationship between SCS and lattice

cryptographies.

2. SYSTEM ANALYSIS

The Systems Development Life Cycle (SDLC), or

Software Development Life Cycle in systems

engineering, information systems and software

engineering, is the process of creating or altering

systems, and the models and methodologies that

people use to develop these systems. In software

engineering the SDLC concept underpins many

kinds of software development methodologies.

2.1 Existing System

In fact, the data deduplication technique, which is

widely adopted by current cloud storage services in

existing clouds, is one example of exploiting the

similarities among different data chunks to save

disk space and avoid data retransmission . It

identifies the same data chunks by their fingerprints

which are generated by fingerprinting algorithms

such as SHA-1, MD5. Any change to the data will

produce a very different fingerprint with high

probability . However, these fingerprints can only

detect whether or not the data nodes are duplicate,

which is only good for exact equality testing.

Determining identical chunks is relatively

straightforward but efficiently determining

similarity between chunks is an intricate task due to

the lack of similarity preserving fingerprints (or

signatures).

a) Disadvantages of Existing System

 Unplanned distribution of data chunks can

lead to high information disclosure even

while using multiple clouds.

 Frequent modifications of files by users

result in large amount of similar chunks1;

 Similar chunks across files, due to which

existing CSPs use the data de duplication

technique.

2.2 Proposed System

We present Store Sim, an information leakage

aware multi cloud storage system which

incorporates three important distributed entities and

we also formulate information leakage optimization

problem in multi cloud. We propose an

approximate algorithm, BFS Minhash, based on

Minhash to generate similarity-preserving

signatures for data chunks. Based on the

information match measured by BFS Minhash, we

develop an efficient storage plan generation

algorithm, clustering, for distributing users data to

different clouds.

a) Advantages

 However, previous works employed only

a single cloud which has both compute

and storage capacity. Our work is different

since we consider a mutli cloud in which

each storage cloud is only served as

storage without the ability to compute.

 Our work is not alone in storing data with

the adoption of multiple CSPs these work

focused on different issues such as cost

optimization , data consistency and

availability.

2.3 Architecture analysis:

 Structured project management techniques (such

as an SDLC) enhance management’s control over

projects by dividing complex tasks into

manageable sections. A software life cycle model

is either a descriptive or prescriptive

characterization of how software is or should be

developed. But none of the SDLC models discuss

the key issues like Change management, Incident

management and Release management processes

within the SDLC process, but, it is addressed in the

overall project management. In the proposed

hypothetical model, the concept of user-developer

interaction in the conventional SDLC model has

been converted into a three dimensional model

which comprises of the user, owner and the

developer. In the proposed hypothetical model, the

concept of user-developer interaction in the

conventional SDLC model has been converted into

a three dimensional model which comprises of the

user, owner and the developer. The ―one size fits

all‖ approach to applying SDLC methodologies is

no longer appropriate. We have made an attempt to

address the above mentioned defects by using a

http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Information_systems
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Methodologies
http://en.wikipedia.org/wiki/Software_development_methodologies

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 915 Copyright @ 2020 Authors

new hypothetical model for SDLC described

elsewhere. The drawback of addressing these

management processes under the overall project

management is missing of key technical issues

pertaining to software development process that is,

these issues are talked in the project management at

the surface level but not at the ground level.

2.4 Data Preprocessing

There are three symbolic data types in NSL-KDD

data features: protocol type, flag and service. We

use one-hot encoder mapping these features into

binary vectors. One-Hot Processing: NSL-KDD

dataset is processed by one-hot method to

transform symbolic features into numerical

features. For example, the second feature of the

NSL-KDD data sample is protocol type. The

protocol type has three values: tcp, udp, and icmp.

One-hot method is processed into a binary code

that can be recognized by a computer, where tcp is

[1, 0, 0], udp is [0, 1, 0], and icmp is [0, 0, 1]

3. SYSTEM DESIGN
3.1 System architecture

Below architecture diagram represents mainly flow

of request from the users to database through

servers. In this scenario overall system is designed

in three tiers separately using three layers called

presentation layer, business layer, data link layer.

This project was developed using 3-tier

architecture.

Figure-1: Architecture diagram

a) 3-Tier Architecture:

The three-tier software architecture (a three layer

architecture) emerged in the 1990s to overcome the

limitations of the two-tier architecture. The third

tier (middle tier server) is between the user

interface (client) and the data management (server)

components. This middle tier provides process

management where business logic and rules are

executed and can accommodate hundreds of users

(as compared to only 100 users with the two tier

architecture) by providing functions such as

queuing, application execution, and database

staging. The three tier architecture is used when an

effective distributed client/server design is needed

that provides (when compared to the two tier)

increased performance, flexibility, maintainability,

reusability, and scalability, while hiding the

complexity of distributed processing from the user.

These characteristics have made three layer

architectures a popular choice for Internet

applications and net-centric information systems.

The System Design Document describes the system

requirements, operating environment, system and

subsystem architecture, files and database design,

input formats, output layouts, human-machine

interfaces, detailed design, processing logic, and

external interfaces.

b) Construction of Use case diagrams

A use case diagram in the Unified

Modeling Language (UML) is a type of behavioral

diagram defined by and created from a Use-case

analysis. Its purpose is to present a graphical

overview of the functionality provided by a system

in terms of actors, their goals (represented as use

cases), and any dependencies between those use

cases. The main purpose of a use case diagram is to

show what system functions are performed for

which actor. Roles of the actors in the system can

be depicted.

Figure-2: Use Case Diagram

c) Sequence Diagrams
A sequence diagram in Unified Modeling

Language (UML) is a kind of interaction diagram

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 916 Copyright @ 2020 Authors

that shows how processes operate with one another

and in what order. It is a construct of a Message

Sequence Chart. Sequence diagrams are sometimes

called event diagrams, event scenarios, and timing

diagrams.

Figure-3: Sequence diagram

d) Class Diagram

In software engineering, a class diagram in the

Unified Modeling Language (UML) is a type of

static structure diagram that describes the structure

of a system by showing the system's classes, their

attributes, operations (or methods), and the

relationships among the classes. It explains which

class contains information.

Figure-4: Class Diagram

e) Activity Diagram

Activity diagrams are graphical representations of

workflows of stepwise activities and actions with

support for choice, iteration and concurrency. In

the Unified Modeling Language, activity diagrams

can be used to describe the business and

operational step-by-step workflows of components

in a system. An activity diagram shows the overall

flow of control.

Figure-5: Activity Diagram

4. IMPLEMENTATION

a) Design

The software system design is produced from the

results of the requirements phase. Architects have

the ball in their court during this phase and this is

the phase in which their focus lies. This is where

the details on how the system will work is

produced. Architecture, including hardware and

software, communication, software design (UML is

produced here) are all part of the deliverables of a

design phase.

b) Implementation

Code is produced from the deliverables of the

design phase during implementation, and this is the

longest phase of the software development life

cycle. For a developer, this is the main focus of the

life cycle because this is where the code is

produced. Implementation my overlap with both

the design and testing phases. Many tools exists

(CASE tools) to actually automate the production

of code using information gathered and produced

during the design phase.

5. TESTING

Testing is the process where the test data is

prepared and is used for testing the modules

individually and later the validation given for the

fields. Then the system testing takes place which

makes sure that all components of the system

property functions as a unit. The test data should be

chosen such that it passed through all possible

condition. The following is the description of the

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 917 Copyright @ 2020 Authors

testing strategies, which were carried out during the

testing period.

During testing, the implementation is tested against

the requirements to make sure that the product is

actually solving the needs addressed and gathered

during the requirements phase. Unit tests and

system/acceptance tests are done during this phase.

Unit tests act on a specific component of the

system, while system tests act on the system as a

whole.

So in a nutshell, that is a very basic overview of the

general software development life cycle model.

Now let’s delve into some of the traditional and

widely used variations.

5.1 System Testing

Testing has become an integral part of any system

or project especially in the field of information

technology. The importance of testing is a method

of justifying, if one is ready to move further, be it

to be check if one is capable to with stand the

rigors of a particular situation cannot be

underplayed and that is why testing before

development is so critical. When the software is

developed before it is given to user to user the

software must be tested whether it is solving the

purpose for which it is developed. This testing

involves various types through which one can

ensure the software is reliable. The program was

tested logically and pattern of execution of the

program for a set of data are repeated. Thus the

code was exhaustively checked for all possible

correct data and the outcomes were also checked.

5.2 Module Testing

To locate errors, each module is tested individually.

This enables us to detect error and correct it

without affecting any other modules. Whenever the

program is not satisfying the required function, it

must be corrected to get the required result. Thus

all the modules are individually tested from bottom

up starting with the smallest and lowest modules

and proceeding to the next level. Each module in

the system is tested separately. For example the job

classification module is tested separately. This

module is tested with different job and its

approximate execution time and the result of the

test is compared with the results that are prepared

manually. Each module in the system is tested

separately. In this system the resource classification

and job scheduling modules are tested separately

and their corresponding results are obtained which

reduces the process waiting time.

5.3 Integration Testing

After the module testing, the integration testing is

applied. When linking the modules there may be

chance for errors to occur, these errors are

corrected by using this testing. In this system all

modules are connected and tested. The testing

results are very correct. Thus the mapping of jobs

with resources is done correctly by the system.

5.4 Acceptance Testing

When that user fined no major problems with its

accuracy, the system passers through a final

acceptance test. This test confirms that the system

needs the original goals, objectives and

requirements established during analysis without

actual execution which elimination wastage of time

and money acceptance tests on the shoulders of

users and management, it is finally acceptable and

ready for the operation.

6. OUTPUT SCREENS

Figure: Home Page

7. CONCLUSION

Distributing data on multiple clouds provides users

with a certain degree of information leakage

control in that no single cloud provider is privy to

all the user’s data. However, unplanned distribution

of data chunks can lead to avoidable information

leakage. We show that distributing data chunks in a

round robin way can leak user’s data as high as

80% of the total information with the increase in

the number of data synchronization. To optimize

the information leakage, we presented the

StoreSim, an information leakage aware storage

system in the multicloud. StoreSim achieves this

goal by using novel algorithms, BFSMinHash and

SPClustering, which place the data with minimal

information leakage (based on similarity) on the

same cloud. Through an extensive evaluation based

on two real datasets, we demonstrate that StoreSim

is both effective and efficient (in terms of time and

storage space) in minimizing information leakage

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-12 No. 01 December 2020

Page | 918 Copyright @ 2020 Authors

during the process of synchronization in

multicloud. We show that our StoreSim can

achieve near-optimal performance and reduce

information leakage up to 60% compared to

unplanned placement. Finally, through our

attackability analysis, we further demonstrate that

StoreSim not only reduces the risk of wholesale

information leakage but also makes attacks on

retail information much more complex.

REFERENCES

[1] K. Akher_, M. Gerndt, and H. Harroud,

``Mobile cloud computing for computation

of_oading: Issues and challenges,'' Appl. Comput.

Informat.,vol. 14, no. 1, pp. 1_16, 2018.

[2] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and

S. U. Khan, ``Seamless application execution in

mobile cloud computing: Motivation, taxonomy,

and open challenges,'' J. Netw. Comput. Appl., vol.

52, pp. 154_172, Jun. 2015.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher,

and V. Young, ``Mobile edge computing_A key

technology towards 5G,'' ETSI White Paper, vol.

11, no. 11, pp. 1_16, 2015.

[4] R. Roman, J. Lopez, and M. Mambo, ``Mobile

edge computing, Fog et al.: A survey and analysis

of security threats and challenges,'' Future Gener.

Comput. Syst., vol. 78, pp. 680_698, Jan. 2018.

[5] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C.

X. Mavromoustakis, and G. Mastorakis, ``Drop

computing: Ad-hoc dynamic collaborative

computing,'' Future Gener. Comput. Syst., vol. 92,

pp. 889_899, Mar. 2017.

[6] V.-C. Tabusca, R.-I. Ciobanu, and C. Dobre,

``Data consistency in mobile collaborative

networks based on the drop computing paradigm,''

in Proc. IEEE Int. Conf. Comput. Sci. Eng. (CSE),

Oct. 2018, pp. 29_35.

[7] G. Huerta-Canepa and D. Lee, ``A virtual cloud

computing provider for mobile devices,'' in Proc.

1st ACM Workshop Mobile Cloud Comput.

Services Social Netw. Beyond (MCS). New York,

NY, USA: ACM, 2010, pp. 6:1_6:5. doi:

10.1145/1810931.1810937.

[8] N. Fernando, S. W. Loke, and W. Rahayu,

``Dynamic mobile cloud computing: Ad hoc and

opportunistic job sharing,'' in Proc. 4th IEEE Int.

Conf. Utility Cloud Comput. (UCC),Washington,

DC, USA: IEEE Comput. Soc.,Dec. 2011, pp.

281_286. doi: 10.1109/UCC.2011.45.

[9] E. Miluzzo and R. Cáceres, and Y.-F. Chen,

``Vision: mClouds_Computing on clouds of mobile

devices,'' in Proc. 3rd ACM Workshop Mobile

Cloud Comput. Services (MCS). New York,

NY,USA: ACM, 2012, pp. 9_14. doi:

10.1145/2307849.2307854.

