
Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 302 Copyright @ 2018 Authors

The Initial Global Conference on Perceptual Computing in Data Sciences Moving

Forward with Including Fault Tolerance in Agent-based Systems

Sachin Kumar Patra, Pinaki Bhusan Nayak

Department of Computer Science and Engineering

Gandhi Academy of Technology and Engineering,Berhampur

Abstract

Because of the intricacy of each entity's structure and the many ways in which the

multiple agents interact with one another, distributed systems based on agent entities are

prone to failure. Even though some approaches deal with fault failure, models that

objectively address the field of fault tolerance are still needed. This is especially true

when it comes to existing approaches that cover fault tolerance using conventional

techniques that rely on communication and the underlying operating system. In this

work, we propose a sentinel-based paradigm for handling agent conflict that incorporates

fault tolerance directly into the language that describes the agent's behavior.

1. Introduction

The research community has been interested in fault-tolerance of multi-agent systems for

the last ten years. Numerous academics have focused on the necessity of managing system

complexity by taking system faults into account in the various agent software engineering

processes as a result of the advancement of consensus theory in MAS [1-2]. In fact, MAS

is thought to be more susceptible to interface, physical, and development errors since it is

built on dispersed entities. The majority of research on managing faults in multi-agent

systems focuses on fault detection and recovery, which are derived from conventional

methods for recovering from other

distributed systems failure [3]. However, MAS has its own specificities and

characteristics, and applying traditional tolerance techniques can be suitable just for

specific situation and require special infrastructural support [4]. In this paper, we are

interested to integrate and implement fault tolerance in the agent’s components in order

to build agents system by taking into account fault tolerance in the design phase of the

agent software engineering.

Multiple agents work together to address challenges that are outside each agent's scope

of expertise in agent-based systems [5]. We provide a model to define the behavior of

the agents in the three operating modes—normal, temporal tolerance, and degraded—in

order to include fault tolerance into the MAS system. Modeling the agent's behavior on

the presumption that no errors occur is the focus of the normal mode. The temporal

tolerance mode simulates a system where agents can function for a finite amount of

time even when faults are present. When errors arise, the degraded mode takes into

account simulating how the agent's functionality deteriorates.

This is how the remainder of the paper is structured. A similar work is presented in

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 303 Copyright @ 2018 Authors

Section .

2. Connected work

There has been some work done on MAS in the area of fault tolerance to enable

designers to create agents that can handle errors. Fault tolerance is one area of study that

is interested in incorporating into the agent behavior model. The author of [6] suggests

using a meta-script to control the agent's behavior. The latter uses fault tolerance by

handling messages that reflect the exception. suggests the fault tolerant agent

communication language (FT-ACL), an extension of the FIPA Agent Communication

Language (ACL), to handle agent communication crash failures.

Using sentinels to address MAS flaws is the focus of another area of study [8]. For

agents who are not agents, the sentinels are able to identify and manage exceptions. By

cloning the essential agents system, other researchers are now embracing the replication

notion [9, 10]. A suggested exception handling service in [11]'s work enables processing

of agent-to-agent communication in pre-defined languages for the purpose of learning

about exceptions and specifying actions taken in response to them.

2. The internal agent behavior incorporates fault tolerance.

In order to properly define the behavior of the system by accounting for fault

tolerance, the study suggests a model called Extended Multi Decisional Reactive

(E-MDRA), which is based on three modes. Four basic functions (action, decision,

decision acknowledgement, and signal) are used in the first mode to characterize

the typical system behavior. Fault-tolerance in the second and third modes is

recognized and articulated to define temporal tolerance and degraded modes.

The following describe the typical mode: Action A: an operation that might be carried

out on the agent; Decision D: an answer that the agent offers in response to the action.

It is connected to a decision horizon Hd, which shows how long the decision will

remain in effect.

 • External State E': indicates the agent's state following the resolution of the action;

 • External Objective O': indicates the behavior the agent adopts after receiving an

action;

 • Signal S: indicates an answer or an acknowledgment that the agent expects from an

external entity;

 • Internal State E: indicates the agent's current state at a given moment, and which is

validated by the comprehension and understanding of a received signal.

Conversely, the following components form the basis of the deteriorated tolerance and

temporal modes:

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 304 Copyright @ 2018 Authors

• Degraded external objective: If the acknowledgment S is not received, the agent will

cause event F. Degraded internal state N: represents the condition indicating the

anomaly subsequent to the receipt of the event F. G: reflects the conduct that the agent

adopted in response to the system dysfunction

• Tolerant internal state T: represents the condition in which the agent prolongs the

waiting period of the signal S.

 • Degraded External State L: reflects the remedy offered by the agent to address the

anomaly of the system.

1.1. Standard mode

Assuming that there are no defects, we define the system's behavior in the normal mode.

This leads to the definition of

four functions: the Action function (Act), the Decision function (Dec), the Decision

Acknowledgment function (DecAck), and the Signal function (Sig).

1.1. Normal mode

In the normal mode, we specify the behavior of the system under the assumption that

no faults are occurred. Four functions are defined for this purpose: Action function

(Act), Decision function (Dec), Decision Acknowledgement function (DecAck) and

finally the Signal function (Sig).

• The action feature

These stimuli may be viewed as actions applied to the reactive agent in order to carry

out tasks or provide services, as the reactive agent is driven by stimulus-response

behavior. Any agent that receives an action responds by modifying its internal behavior

in accordance with its predetermined logic. Therefore, we define the Act function,

which links an action A to a single External objective O', to reflect the dynamics of the

agent. The latter depicts how the agent behaved after getting the action.

.

Act : A O’

a o’

a A, ! o’ O’ / Act(a) = o’

 Decision function

Reactive agents interpret stimuli from their surroundings as immediate reactions that

they deliberate to define the External Objective. These responses may be viewed as

Decisions, which stand for a particular problem's solution. Furthermore, we may use

the Dec function to describe the immediate reaction capability (as a decision) because

the behavior of the agent depends on its internal state

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 305 Copyright @ 2018 Authors

Dec:

E

(o’, e)

 (d,

o)

 (o’, e) O’ E, ! (d, o) D O / Dec(o’, e) = (d, o)

• The function that acknowledges decisions

Decisions that provide the system actions answers determine the dynamic

behavior of the system. But the agent has a limited amount of time to carry out its

function in order to promptly fix an issue. Every decision is therefore identified by

its decision horizon Dur Dec, which denotes the amount of time that the decision

is still in effect. The Ack Dec function is a representation of this process, linking

every decision to a single signal and a decision horizon. This is officially

translated as follows: AckDec:

 D IN

d (s, Hd)

[d D, ! (s, Hd) S IN / AckDec(d) = (s, Hd)] [d ≤Hd s]

Using: - IN stands for all potential durations; - ム for the Real-Time Temporal Logic

(RTTL) future operator

Quantitative temporal features are expressed using Real-Time Temporal Logic (RTTL)

[Bellini et al., 2000].

• For instance:A ≤t B : means that when A occurs, B must occur in t units of time;

• A [t, t] B : means that when A occurs, B must occur after t units of time

 Signal function

When an agent makes a decision on a perceived action, both the environment and

the agent's behavior are impacted. The Sig function outcome of the Dec and AckDec

functions, which links an external objective and signal to an internal and external

state, is thus presented in order to provide the agent the power to modify its state.

Formally speaking, the function is translated by:by :

Sig:

S

 (o’,

o, s)

 (e,

e’)

1

/ Dec(o’, e1) = (d, o)] (s, Hd) S

 / AckDec(d) = (s, Hd)]

 [(e2, e’) E E’ � (e1 ≠ e2) / Sig(o’, o, s) = (e2, e’)]

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 306 Copyright @ 2018 Authors

This indicates that an external state e' is instantly transmitted and the new agent

internal state is changed to e when the agent gets a signal s, contingent upon the

current external objective o' and the predicted internal objective o.

Fig. 1. Normal mode

 1.2. Mode of Temporal Tolerance

For a brief period of time, the system may work and act as usual even when there are

mistakes thanks to the Temporal Tolerance mode. The ability to respond locally

against any additional delay that results from the choice not being recognized

represents this mode at the agent level. Two functions—the internal objective

tolerance function (AddTol) and the internal state tolerance function (TolSnt)—

represent the implementation of this system.

• Function of internal state tolerance

In typical behavior, the agent's state transforms to an internal objective—a

representation of the anticipated state following the execution of a choice—when the

decision is carried out. The latter is limited by an acknowledgment signal's related

time. The agent modifies its internal state representing the tolerance mode and

produces an acknowledgment overflow event in the case that the signal is not

acknowledged. The TolSnt function, which is a formal translation of this process, is

represented by:

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 307 Copyright @ 2018 Authors

TolSnt: O’

(o’, o) (f, t)

 /

Dec(o’, e) = (d, o)] and [(s, S

IN / AckDec(d) = (s, Hd)] [d ≤Hd s]

[! (f, t) F T � (o [Hd, Hd] f) / TolSnt(o’, o)

= (f, t)] [Hd, Hd] f) indicates that the occurrence f

happens beyond the decision horizon Hd and after achieving the

internal goal o.

Internal objective tolerance function:

Internal objective tolerance function: To allow the agent to prolong the time it takes to

acknowledge a decision, we define the AddTol function. This function associates, for each

decision d, an event f and the tolerance state t that comes from the TolSnt function. It also

associates an additional time and a new internal objective that indicates the agent's

expected state. The formal translation of this function is

AddTol: F T O S IN

(d, f, t) (o, s, AH)

As (d, o1

/ Dec(o’, e) = (d, o1)] and [TolSnt(o’, o1) =

(f, t) with (f, t) T]

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 308 Copyright @ 2018 Authors

 [! (o2, s, AH) (O S IN) � (o1 ≠o2) � [d ≤(Hd + AH) s] / AddTol(d, f, t)

= (o2, s, AH)With: IN stands for every potential length of time.The mechanism of the

temporal tolerance mode is shown in Figure 2.

Fig. 2. Temporal Tolerance mode

1.2. Lesser mode

During the repair process, the agent consents to a reduction in functionality in order to

maintain operation despite the mistakes that have occurred. The primary concept involves

seeing the deteriorated state as an external goal for the agent to accomplish, and

regarding any corrective action as a new external goal. The non-compliance with time

limitations or the changing environmental variables are what cause this deteriorated

mode to occur.

to indicate the agent's switch to the weakened mode. Four functions are

recommended for use: degraded acknowledgment function (Ack Deg), degraded

exterior objective (Deg Oxt), degraded internal state function (Deg Snt), and degraded

signal function (Sig Deg).

• A decline in the internal state function

When the agent behaves differently from how it did at first, as seen by its disregard

for time limits, the transition to the degraded mode is initiated. When we have more

time to move to the temporal tolerance mode or when the decision horizon is surpassed,

these limitations arise. The mechanism is characterized by the degraded internal state

function (Deg Snt), which is linked to both internal and external objectives, an event f

that arises from exceeding temporal constraints, and a degraded internal state that

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 309 Copyright @ 2018 Authors

signifies the shift in the agent behave. The function is formally translated by:

Deg Snt: O’ F G

(o’, o) (f, g)

As (d, o1 /

Dec(o’, e) = (d, o1)] And [(s, Hd) S

IN / Ack Dec(d) = (s, Hd)] [d ≤Hd s]

 [(f, g) F G (o1 [Hd, Hd] f) / Deg Snt(o’, o1) = (f, g)]

If [(f, t) F T / Add Tol(f, t, d) = (o2, s, AH) with (o2, s, AH) (O IN S)

(o1 ≠o2)]

 [! (f, g) F G � (o2 [Hd + AH, Hd + AH] f) / Deg

Snt(o’, o2) = (f, g)]

• A reduced ability to achieve external goals

Degrading an agent's regular behavior and assigning a new external goal to fulfill is the

aim of the degraded external objective function, or Deg Oxt. The agent's deteriorated

condition, which symbolizes this process, signifies the oddity it encounters. Beginning

in this condition, a new external aim is officially translated by the deteriorated external

state that results from it.

Deg Oxt: G L

(g, n) (l , o')

As (o’1, O / Deg Oxt(o’1, o) = (f, g) with (f, g) F G

]
 [! (l, o’2) L O' � (o'1 ≠o'2) / Deg Oxt(g, n) = (l , o'2)]

• A diminished ability to acknowledge

By accepting a reduction in its functions, the agent can use the degraded mode to

address abnormalities that arise. Because the degradations are carried out by outside

goals. The latter then indicate to the agent that their relevant duty has been completed.

The mechanism in question is characterized by the degraded acknowledgment function

(Ack Deg), which is designed to verify the accomplishment of external goals through

the generation of a report for the agent. The formal translation of this function is:

Ack Deg: G S

(g, l, o') s

 (g , n) G N / DegSnt(g, n) = (l , o') with (l, o') L O']

 [s S / AckDeg(g, l, o') = s]

• Reduced signal performance

Allowing the agent to revert to its regular state upon reception of the signal is the

aim of the degraded signal function (SigDeg). The latter is contingent upon the

acknowledgement transmitted by the external goals as a consequence of the mode's

degradation. which, when translated officially, is:

Sig Deg: S O' O

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 310 Copyright @ 2018 Authors

s , o)

As [(o’1, o1 O / DegOxt(o’1, o1) = (f, g) with (f, g) F

G] ,

2) with (l, o'2

 (o'1 ≠o'2)] and [AckDeg(g, l, o'2) = s

avec s S]
 [SigDeg(s) = (o'1, o1)]

The Figure 3 illustrates the mechanism of the degraded mode.

Fig. 3. Degraded mode

2. Integrating fault tolerance into the actions of external agents

The Extended Multi Decisional Reactive (E-MDRA) model is composed of a number

of agents that are linked to one another by communication interfaces. This creates a

two-level tree-based hierarchical structure that consists of a DRA Supervisor (E-

DRAS) and two or more sub-agent components (E-MDRASi). Two communication

interfaces, the Decisional Interface (DI) and the Signal Interface (SI), are used to

establish a link between the supervisor and its sub-agents. An environment's actions and

external states' emissions to the environment are how such a system interacts with its

surroundings.

Many Agents An E-DRAS Supervisory Agent is in charge of several E-DRAC

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 311 Copyright @ 2018 Authors

component agents in Extended Decision Reactive (E-MDRA).

The component of E-DRAC can be:

And an agent Supervisor: Engages with the environment directly or manages other

agents

• An agent element is someone who works directly with the environment and is not

in charge of any other agents.

Figure 4 depicts the Agent's Hierarchical Structure (AHS) hierarchical structure.

AHS describes subagents and supervisor agents..

Fig. 4. Multi-Agent structure

 A quadruplet AHS = <E-DRAS, n, E-DRAC, AgentSup> defines the

hierarchical structure of Agent's Hierarchical Structure (AHS), where:

 • E-DRAS: supervisory set of agents

 • n = dim(AHS), which is the dimension of AHS (number of subagents under

the agent supervisor's direction).

 • E-DRAC: collection of agent constituents (n-tuple of agents)

 • Agent Sup: Function that links the components of an agent's subagent to

the agent supervisors

Agent Sup : E-DRAS E-DRAC
n

Ags (Agc1, Agc2, …, Agcn)

[Ags E-DRAS(AHS), (Agc1, Agc2, …, Agcn) E-DRAC(AHS) / Agent

Sup(Ags) = (Agc1, Agc2, …, Agcn)]

1.2. Two information flows form the basis of the communication interface: • A

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 312 Copyright @ 2018 Authors

descending flow that is represented by the Decisional Interface, which moves choices

and actions from E-DRAS to E-DRACs.

1.3. • An amount flow that is represented by the Signal Interface, which communicates

with the E-DRAS the signals and external states of the E-DRACs.

1.4. In the sections that follow, the two decision and signal interfaces are formalized.

1.5. Formalization of the Decision Interface

 Transforming the decisions made by the agent supervisor into a set of instructions

for the components of the lower-level sub-agents is the aim of the Decision

Interface. It also describes the common acts that the actors take.

 Dec Int = <Dec Input, n, Dec Output, Tra Dec> is a quadruplet that formalizes

the Decisional Interface (Dec Int).

 • Dec Input = (E-DRAS ₴ D) is a series of choices related to the agent supervisor.

 n is the dimension of Dec Int (the collection of Agc subagents related to (Ags,

d)); n = dim(Dec Int) <= dim(AHS)

 • Dec Output = (E-DRAC ₴ A)n, which is the collection of actions related to the

component agents.

 Tra Dec is a function that converts a decision into many concurrent actions

directed at agents at a lower level.

Tra Dec : Dec Input Dec Output

(Ags, d) ((Agc1, a1), (Agc2, a2), …, (Agcn, an))

 (Ags , d) Dec Input(Dec Int), (Agc, a) Dec Output(Dec Int), Agc

 Agent Sup(Ags) / Tra Dec(Ags ,d) = ((Agc1, a1), (Agc2, a2), …, (Agcn,

an))

 1.6. Signal interface formalization



 Through the decisional interface, their actions are received by the lower level

agents. These agents then communicate an external state to the agent supervisor

to verify that their operations were carried out as intended. These external states

are successfully received by the Signal interface.

 A quintuple defines the signal interface (Sig Int). Sig Int = <Sig Error, Tra Sig,

Sig Output, n, Sig Input>

 Dim (Sig Int) = dim (Dec Int) < dim (AHS) is the dimension of Sig Int, which

represents the number of sub-agents Agc connected with (Ags, s).

 • Sig Input = (E-

agents component

 • Sig Output: signals that the agent supervisor received; Sig Output = E-DRAS ₴

S

 • Tra Sig: A function that unifies the several signals the agents' component

generates into a single signal connected to the agent supervisor.

Tra Sig: Sig

Input Output

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 313 Copyright @ 2018 Authors

((Agc1, e’1), (Agc2, e’2), …, (Agcn,

e’n)) (Ags, s)

 (Agc, e’) Sig Input, (Ags , s) Sig Output / Tra Sig((Agc1, e’1), (Agc2, e’2),

…, (Agcn, e’n)) = (Ags, s)

Sig Error: Sig Output Sig Input

(Ags , s) ((Agc1, e’1), (Agc2, e’2), …,

(Agcn, e’n))

 (Ags , s) Sig Output, (Agc, e’) Sig Input, / Sig Error(Ags, s) = ((Agc1,

e’1), (Agc2, e’2), …, (Agcn, e’n))

2. Examine cases

We suggest using the detecting intrusion system case study to demonstrate our

methodology. To detect, diagnose, and transmit information about any hostile incursion

in the protected region, a number of distributed agents must collaborate in this kind of

system. Figure 5 illustrates how to simulate an agent's unique behavior while

accounting for fault tolerance. The UML State chart diagram represents the internal

behavior throughout. After receiving the order to "detect intrusion," the agent decides to

"get video surveillance." If he obtains the footage from the scene, he examines it,

processes the data, and notifies the user of the out come I.e. He extends the time he

waits for video surveillance if retrieving the videos is not feasible. If, after that period,

he still does not get any information, he modifies his behavior by choosing to detect

movement and temperature. A report is delivered to the user once all scene information

has been gathered.

Fig. 5. Fault Tolerance for internal agent behavior

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 314 Copyright @ 2018 Authors

Four options may be identified based on the internal behavior of the "Detect intrusion"

action: "Get video surveillance," "send info to the user," "detect movement," and "detect

temperature." As a result, we can describe the agent's exterior behavior (Fig.6) all the

way through the UML activity diagram. In its initial choice, the coordinator agent selects

the action "collect image from scene," which is connected to the agent in charge of the

surveillance camera. If the latter transmits the video, the coordinator agent will review

its content; if not, he will make a call to the Movement sensor agent to obtain movement

data and the Temperature sensor agent to obtain temperature

Fig. 6. Fault Tolerance for external agent behavior

Remarks

We have provided a model in this research to include fault tolerance into the MAS

behavior definition. This paradigm allows designers to construct agents with degraded

fault tolerance and temporal tolerance. The suggested paradigm, which is based on the

sentinel method to handling agent conflict, incorporates fault tolerance directly into the

vocabulary that describes the behavior of the agent. We are presently working on the

implementation phase as future work to assess the execution process' fault tolerance.

References

[1] Su, Lili, and Nitin H. Vaidya. “Fault-tolerant multi-agent optimization: optimal

iterative distributed algorithms.” In Proceedings of the 2016 ACM Symposium on

Principles of Distributed Computing. 2016, p. 425-434

[2] Zhang, Gaosheng, et al. (2018) “Fault-tolerant coordination control for second-

order multi-agent systems with partial actuator effectiveness.” Information

Dogo Rangsang Research Journal

ISSN : 2347-7180 Vol-08 Issue-01 2018

Page | 315 Copyright @ 2018 Authors

Sciences 423: 115-127

[3] Hua, Yongzhao, et al. “Distributed fault-tolerant time-varying formation control for

second-order multi-agent systems with actuator failures and directed topologies.”

IEEE Transactions on Circuits and Systems II: Express Briefs. 2017

[4] Wangapisit, Ornkamon, et al. (2014) “Multi-agent systems modelling for

evaluating joint delivery systems.” Procedia-Social and Behavioral Sciences 125:

472-483

[5] Shakshuki, Elhadi, and Malcolm Reid. (2015) “Multi-agent system applications in

healthcare: current technology and future roadmap.”

Procedia Computer Science 52: 252-261

[6] Potiron, Katia, Amal El Fallah Seghrouchni, and Patrick Taillibert. “Fault Tolerance

for MAS Specific Faults.” From Fault Classification to Fault Tolerance for Multi-

Agent Systems. Springer London, 2013, p. 37-57

[7] Dragoni, Nicola, Mauro Gaspari, and Davide Guidi. (2007) "An ACL for specifying

fault-tolerant protocols." Applied Artificial Intelligence

21 (4-5): 361-381

[8] Basilico, Nicola, Timothy H. Chung, and Stefano Carpin. “Distributed online

patrolling with multi-agent teams of sentinels and searchers.”

Distributed Autonomous Robotic Systems. Springer, Tokyo, 2016, p. 3-16

[9] Platania, Marco, et al. “Towards a practical survivable intrusion tolerant

replication system.” In IEEE 33rd International Symposium on Reliable

Distributed Systems (SRDS). 2014, p. 242-252

[10] Bhanot, Rajdeep, and Rahul Hans. (2015) “A Secure and Fault Tolerant Platform

for Mobile Agent Systems.” International Journal of Security and Its Applications

9 (5): 85-94

[11] Fang, A., et al. “Fault Tolerance Assistant (FTA): An Exception Handling

Programming Model for MPI Applications”. No. LLNL--TR- 692704. Lawrence

Livermore National Lab, Livermore, CA (United States). 2016

