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A B S T R A C T   
 

 

Condition-based maintenance (CBM) is a maintenance approach centered on performing maintenance tasks 
according to the health status of the system. It has been widely adopted across various industries due to its 
effectiveness. This paper conducts a comprehensive survey focusing on the implementation of condition-based 
maintenance within the nuclear industry.  
 
The survey systematically examines the key phases of CBM, namely monitoring, diagnostics, and prognostics. 
A thorough review is conducted on each of these aspects, encompassing both the existing practices within the 
nuclear sector and the ongoing research endeavors aimed at developing new methods and technologies.  
 
By providing insights into current practices and the scope of research in condition-based maintenance within 
the nuclear industry, this survey aims to equip maintenance stakeholders and researchers with a 
comprehensive understanding of the field. 
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1. Introduction 

 
Maintenance has evolved over time as advancement in technol- 

ogy and fast-growing research has been put into building more 

efficient and reliable systems. In  the  early  days  of  production, the 

approach to maintenance was that of ‘‘fix it after it fails” method. 

This was because simple machines were employed in production 

and demand was not so high. Therefore, the industries could afford 

to have downtimes; this type of maintenance is ter- med corrective 

maintenance. The periods after the world war II, the world began to 

experience great advancement in technology and the industries  

had  more  complex  machines,  the  demands got higher and down 

times could mean being out of business. As a result, maintenance 

approach has evolved from the corrective approach to a new 

approach, which is the preventive mainte- nance. The preventive 

type of maintenance from the 1970’s, which is the periodic 

maintenance, involved scheduling maintenance at regular intervals 

to avoid failure. Over time as technology kept advancing, interest 

has shifted from ‘‘avoiding failure” type of maintenance to a more 

cost-effective maintenance. This has brought about another type of 

preventive maintenance, which is the condition-based maintenance 

(CBM). CBM involves undertak- ing maintenance activities based  

on  the  health/  condition/level of degradation of the system/ 

equipment. In Table 1, the summary of how maintenance has 

evolved over time and the characteristics of the different types of 

maintenance is  portrayed  (Moubray, 1995; Agency, 2007). 
CBM has found wide applications in many industries like aero- 

space, electronics, chemical industry, military and many critical 

facilities with good results. This paper intends to explore the state 

of CBM in the nuclear industry. 

This paper is organized in seven (9) sections. The first section is 

the introduction. The second section explores CBM in the nuclear 

industry. The third section explains the state of monitoring. The 

fourth section describes detection in the nuclear industry, while the 

fifth section discusses diagnostics  in  the  nuclear  industry. The 

sixth section explicates the state of prognostics in the nuclear 

industry. The seventh and eight section discusses the different 

modelling methods used in CBM, and also strength, weakness, 

opportunity and threat (SWOT) analysis of these modelling meth- 

ods. The last section is the conclusion. 

2. Condition-based maintenance (CBM) in the nuclear industry 

 
The nuclear industry is a major contributor to the world elec- 

tricity. The nuclear industry does not  just produce electricity, but it 

provides clean energy, which is free of greenhouse gases. Elec- 

tricity from the nuclear plant is used mostly for base-load because 

it is reliable and steady. The nuclear power contribution to world 

electricity as at 1999 was 17% (Davies et al., 2000). Davies et.al 

mentioned that this percentage will most likely reduce in the com- 

ing decades due to challenges faced in the nuclear industry. This 

projection is a reality today because data from 1999 to 2015 has 

shown a decreasing trend of nuclear contribution to the world 

electricity. This is depicted in the Fig. 1 below. In the the last dec- 

ade the contribution from nuclear power has been decreasing as 

given by world energy outlook (IEA, 2017). 
One major factor affecting the nuclear power plant (NPP) is pro- 

ducing electricity in a cost-effective manner without jeopardizing 

safety (which is of highest priority in the nuclear industry). In NPPs, 

the cost of operations and maintenance (O&M) is about 60–70% of 

the total cost of generation (Coble et al., 2012). There- fore, to 

reduce the cost of producing electricity, one important aspect to 

look at is the maintenance. For the NPP to compete suc- cessfully 

with other energy sources, the nuclear industry must reduce the 

cost of generating electricity, which can be made possi- ble through 

a condition-based maintenance strategy. 

CBM has been widely used in other critical facilities like the 

aerospace, naval ships with very good  outcomes.  In addition, in the 

nuclear industry, places like the USA and Europe have incorpo- 

rated CBM to their maintenance strategy and this has resulted in 

reduced maintenance cost and increased output. Bond et al.  in their 

analyses suggested that applying CBM to all key equipment in 

legacy power plants in the United States will result  in  fleet- wide 

savings of over $1 billion per year (Bond et al., 2011). With CBM, the 

NPP will optimize its performance, as maintenance will be done 

only when the plant condition requires it. Many of the NPPs across 

the world are ageing and are pressing for life extension which makes 

ageing management one of the key issues in the nuclear industry 

(Pelo, 2013). At present, CBM is playing a key role in the NPP life 

extension programmes in the United States. 
NPP equipment is majorly categorized into three (3), which are, 

structures, systems and components (SSC). These SSCs are further 

 
Table 1 

Types of Maintenance system and their characteristics. 
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Fig. 1. Percentage  of  nuclear  power  contribution  to  world  electricity  from1999-2015. 

 

classified as active and passive. The active SSCs are the ones that 

move and the passive SSCs are the non-moving ones. Maintenance 

is carried out based on these categories in line with their design and 

functions. Maintenance program in the nuclear industry is a combi- 

nation of policies, processes and procedures that inform the type of 

maintenance that should be used for the plant structures, systems 

or components (SSCs). For the NPP to be operated safely there is a 

need for an effective maintenance. Maintenance in the NPP entails 

different activities which include surveillance, inspection, testing, 

service, overhaul, repairs and part replacements. 

Implementing CBM in the nuclear industry is quite different 

from other industries because of the unique nature of the nuclear 

industry. The factors that have made the nuclear industry unique 

are listed below. Part of these factors are beneficial to the applica- 

tion of CBM while the others account for the reason CBM has not 

been widely applied in the industry. 

 
The nuclear industry has safety systems that are normally being 

monitored and tested extensively, which provides a wealth of 

data of the plant condition, thereby reducing the cost that is 

required for monitoring and surveillance. This is a very useful 

factor that can aid the implementation of CBM in the nuclear 

industry (Chapin et al., 1999). 

The nuclear industry, in particular, is highly regulated owing to 

the risks associated with plant accidents and radiation exposure 

to the public. The introduction of any new technology that 

impacts safety and protection systems in an NPP is scrutinized 

to such an extent that many systems never get implemented 

(Agency, 1999). This particularly has caused the foot-dragging in 

adopting CBM in the nuclear industry but this can be over- come 

by introducing CBM systematically by starting with com- 

ponents that are of less concern to the regulators. So this would 

have made the technology of interest to be well tested, proven 

and trusted enough to be used in other safety-related 

applications. 

The NPP has built-in redundancy and spare capacity. This also 

will aid CBM as it will make decision making easier when prob- 

lems are detected. 

The ageing management of key components is a major issue as 

some of the components have become obsolete and no longer 

being produced and the stringent regulatory process of the 

nuclear industry does not allow the use of just any off-  the- shelf 

component (Pelo, 2013). 

CBM entails; condition monitoring, detecting, diagnostics and 

prognostics. The first stage of CBM is monitoring which involves 

surveillance, testing, using special equipment and techniques in 

knowing the state of the plant. The results from condition monitor- 

ing will help in detecting any abnormality in the plant operations. 

The next step in CBM is diagnostics which involve characterizing the 

detected abnormality, i.e. locating and knowing the magnitude of 

the fault. The results of monitoring, detection and diagnostics can be 

analyzed through different methods to project and determine the 

possible time of failure of the equipment which is the estima- tion 

of the remaining useful life. The results from all these stages of 

CBM can help the maintenance personnel to make a useful deci- sion 

about the type and time of maintenance to be done. Fig. 2 below 

shows the different stages of CBM. The state of each of the stages in 

the nuclear industry is discussed in the following sections. 

 

3. State of condition monitoring in the nuclear industry 

 
Monitoring is a very crucial aspect of condition-based mainte- 

nance. It is the foundation of CBM. Every other aspect of CBM 

depends on the output of plant monitoring. The effectiveness of 

CBM depends largely on how accurate the monitoring process is 

done. This section covers a review on the state of research on dif- 

ferent monitoring techniques employed in the nuclear industry. 

The monitoring practices in NPP are mostly conservative due to 

the unique safety requirements of the industry, which results in 

more expenses, but nuclear plants in the US and Europe have 

started adopting condition-based monitoring which is referred to as 

the On-line condition monitoring (OLM). OLM implies that the plant 

is being monitored and is available at the time, which means the 

nuclear plant is in operation, active and in service. Online in the 

nuclear industry also means that the system is operating in either 

start-up, normal steady-state operation or shutdown transient. 

With OLM, monitoring is being done in an un-intrusive, non- 

destructive and in-situ without obstructing the operations of the 

nuclear plant. OLM of the nuclear plant SSCs  helps in  detecting and 

diagnosing any abnormality in start-ups, normal operations and 

transient conditions. OLM gives the nuclear plant operator, 

information on the state of the plant and maintenance personnel, 

data for the necessary action to take. Series (2013) explains in 

details the different online monitoring technique in the nuclear 

industry. 

 

 
 

Fig. 2. Stages  in  condition-based  maintenance. 
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Hines and Davis (2005) conducted a ‘lessons learned’ exercise 

on NPP on-line monitoring systems. They investigated state of con- 

dition monitoring system in the U.S. nuclear industry and high- 

lighted the enormous research that has been put into the 

application of different online monitoring techniques. From their 

work, it can be observed that early focus of condition monitoring 

was on sensor calibration monitoring. They also  explained  that the 

emphasis now is presently on both sensor and equipment 

monitoring. 

Majorly, data from on-line monitoring in nuclear plants, are used 

in checking vibration in reactor internals, measuring core sta- bility 

margins, leak detection, verify plant thermal performance, 

anticipate failures of rotating equipment, verify proper operation of 

valves, and identify and locate loose parts within the reactor sys- 

tem (Series, 2013). The recent research on the different types of 

monitoring techniques used in the NPP are discussed below: 

 
3.1. Vibration monitoring 

Monitoring vibration signals from the different SSCs of the 

nuclear plant can be an indicator of the state and health of these 

SSCs. Vibration monitoring involved measuring and analysing sig- 

nals from the vibration sensors, which are typically accelerometers 

for high-frequency vibrations and neutron detectors for low- 

frequency vibrations. Several methods have been developed in lit- 

erature on monitoring these vibration signals in different parts of 

the NPP. Many of the methods have been compared with the con- 

ventional monitoring techniques and have yielded desirable results. 

Some areas of application include the monitoring of vibra- tions in 

the reactor coolant pump carried out by Liu et al. (2015). In their 

work they developed a technique on flywheels in main cool- ant 

pumps using Hilbert- Huang transform (HHT) algorithm. Their 

results showed that the proposed method would be effective in 

condition-based maintenance of reactor main coolant pump. Koo 

and Kim (2000) also worked on vibration monitoring within reac- 

tor coolant pumps. There vibration monitoring system involved the 

introduction of a Wigner distribution (WD) which was used in ana- 

lysing vibration signals. They compared their method, which was 

developed with WD to conventional methods based on Fourier 

transform. Their study showed vibration signals using WD are 

easier to analyse. Other notable research in monitoring vibrations 

in RCP include those carried out by Lebold et al. (2005), Prasad 

et al. (2002), Qinghu et al. (2009) and Ko and Kim (2013). Vibration 

monitoring is also used in monitoring the turbine blade conditions. 

(Rao and Dutta, 2010) described a method based on vibration sig- 

nal analysis of the turbine casing. Their approach resulted in an 

early indication of vibration or failures in the nuclear plant turbine 

blades and in more economic manner. De Pauw et al. (2013) in their 

research carried out an estimation  of  the  performance  of the 

different vibration monitoring methods used for measuring flow-

induced vibrations on a fuel pin mock-up. Maekawa et al. (2016) 

presented a non-contact measurement technique for vibra- tion 

stress in piping. Kong et al. (2014) also studied vibrations in piping 

systems. Czibók et al. (2003) monitored control rod vibra- tion 

signals for degradation. A review of vibration signal tech- niques 

used in the nuclear industry can be seen in Sinha (2008). 

3.2. Acoustic monitoring 
Acoustic monitoring involves the different methods used in 

measuring the acoustic emissions (AEs)  of  different  processes and 

components in a nuclear facility (Series, 2013). While acoustic 

emissions (AEs) are transient elastic waves that originate from a 

speedy release of strain energy which is due to a damage/deforma- 

tion inside or on the surface of a material (Matthews, 1983). Sev- 

eral techniques are being used in measuring and analysing AEs 

for monitoring different parts of the nuclear plant some of the research 

work include investigation using an acoustic monitoring system for 

timely detection of check valves  was  carried out  by Lee et al. (2006a). 

They concluded that their approach was able to predict correctly 

failures like disc wear failure and presence of foreign objects from flow 

characteristics and check valve leakage behaviours. Seong et al., (2005) 

also used AE signals in monitoring failures in check valves, which was 

achieved by developing a method based on the AE sensors. These AE 

sensors detected the sound waves of the leakage flow and then the 

power spectral den- sities are estimated with an auto-regressive model. 

They were able to prove that the AE based technique was good for 

detecting check valve failures without the need for disassembling. 
Al-Ghamd and Mba (2006) performed a comparative investiga- 

tion on vibration monitoring and acoustic emission monitoring for 

bearing diagnosis. They found out that AE techniques were able to 

detect fault earlier and has more enhanced identification capability 

than the vibration analysis techniques. Other AE based monitoring 

techniques developed for nuclear plants can be seen in 

Kaewwaewnoi et al. (2010), Shimanskiy et al. (2004), Ai et al. 

(2010) and Lu et al. (2005). 

 
3.3. Loose part monitoring 

Loose parts monitoring is very vital for monitoring structural 

integrity. The loose part monitoring system (LPMS) is used to detect 

detached objects in the nuclear plant. Loose parts in the plant would 

cause flow blockage in the fuel channel, damage the pump impeller, 

and result in cracks in the steam generator’s tube sheet. Detecting 

loose parts will prevent damage to the plant’s internal structures 

(Choi et al., 2011). 

A typical LPMS comprises of sets of accelerometers mounted on 

the reactor vessel, steam generators and reactor coolant pumps 

(Figedy and Oksa, 2005). LPMS makes use of audio signals and noise 

data records. When any part of the system is loose beyond a given 

set point the audio signal produces alarms. The alarm set points are 

based on the plant and the sensitivity of the loose parts monitoring 

equipment. When the alarm goes up, the next step is determining 

the location and size of the loose part, this is achieved by analysing 

the accelerometer output data. (Series, 2013; kima et al., 2012). 

One major factor in building an LPMS is reducing the false alarm 

rate. 
Kim et al. (2002) designed LPMS applying the back propagation 

neural network. Their algorithm was used to estimate the mass of 

loose parts. The result showed that the neural network can be 

applied to LPMS. Their system also resulted in reduced false alarms. 

Figedy and Oksa (2005) further enhanced the use of the neural 

networks in LPMS by combing the artificial neural networks and the 

wavelet in signal processing and enhancing the loose part mon- 

itoring system performance. Their method outdid the traditional 

methods of assessing the mass of loose parts by using the spectral 

index. Their method also resulted in suppressing false alarms. 

The focus of Cao et al. (2012) research was also to reduce false 

alarms in LPMS which they achieved by developing a hybrid method 

for NPPs in which they combined linear predictive coding (LPC) and 

support vector machine (SVM). This they actualised in two stages; 

first, they detected weak burst signals at the initial stage then in 

the second stage was used in reducing the rate of false alarms by 

identifying the detected burst signal. 

 
3.4. Reactor noise analysis 

Reactor noise analysis techniques make use of fluctuations in 

process signals (referred to as reactor noise) to get useful informa- 

tion on the system condition (Series, 2013). Reactor noise analysis 
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is useful in monitoring, investigating and diagnosing the internal 

core vibrations; determining and trending in details the coolant 

flow velocity distribution;  monitoring of core-barrel motion; and in 

qualifying sensors (Czibók et al., 2004). Condition monitoring 

techniques based on noise analysis have been successfully 

employed in In-situ instrumentation channel dynamic perfor- 

mance monitoring in plants like the Ontario Power Generation in 

Canada (Ma and Jiang, 2011) Reactor noise analysis system was also 

installed in the upgrading of the monitoring system the Bors- sele 

NPP in Netherlands. The system was used measuring the reac- tor 

coolant pump vibrations and the core-barrel motions. The newly 

installed system satisfied the nuclear plant’s maintenance need 

(Barutçu et al., 2003) 
Reactor noise analysis is very useful in testing sensors response 

time. The speed of response in sensing lines that connect pressure, 

level and flow transmitters are reduced largely because of block- 

ages, voids, and leaks. Amongst other techniques only the noise 

analysis can effectively test sensor response time while the nuclear 

plant is operating (Hashemian and Jiang, 2010) Noise analysis was 

employed in measuring the time response of the RPS’s sensors and 

in ANGRA-I NPP. In their results, they observed that for systems 

whose power spectral density PSD showed a first-order behaviour, 

simple or not, the values of the time constant are easily deter- 

mined, and the results are very coherent with the expected values. 

Even for quadratic systems, in cases where it was possible to iden- 

tify the low frequencies asymptotes, the determination of the time 

constant was immediate and showed coherent values. But in cases 

where the low frequencies asymptotes were not accurately deter- 

mined, the classification of the system was not possible, so the 

time constant associated with the break frequency has  not shown 

a coherent value, but a much higher value than it would be expected 

as a true value for those sensors (Perillo et al., 2014). 
Ansari et al. (2008) validated the application of neutron noise 

technique for detection of flow-induced vibrations of in-core com- 

ponents. They were able to calculate the magnitude of the dis- 

placement of vibrating control rod from the measured power 

spectral density of neutron noise. 

3.5. Motor electrical signal analysis 
The motor electrical signal analysis is used in monitoring the 

state of the nuclear plant electrical systems, which comprise of 

motors, actuators, generators, instruments channels, cables and 

electric circuits. Monitoring the electrical components is very 

important in nuclear plant maintenance (Series, 2013). The varia- 

tion in current drawn by induction motor during load variation is 

used in monitoring. This approach is called the motor current sig- 

nal analysis MCSA. (Mehala, 2010) in his work described exten- 

sively the use of MCSA in condition monitoring. 

Jung and Seong (2006) monitored the condition of reactor cool- 

ant pump using power line signal analysis in which they combined 

Wigner–Ville Distribution (WVD) and feature area matrix compar- 

ison method in abnormality diagnosis. They validated their 

approach by comparing it with an RCP vibration monitoring tech- 

nique. They were able to detect cracks on the pump shaft keyway 

and thermal sleeve. Their approach was carried out without the use 

of any intrusive sensors. 

Wang et al. (2008) worked on detecting cable degradation in 

nuclear plants. They proposed the joint time-frequency domain 

reflectometry (JTFDR). The method was verified on a cross-linked 

polyethylene (XLPE) cable. This cable is used in critical instrumen- 

tation and control operations in nuclear power plants. Their 

method successfully and effectively monitored the cables ageing 

process and even predict future defects and estimate the cables 

remaining useful life. 

3.6. Instrumentation calibration monitoring 
Instrumentation calibration monitoring is used in ensuring the 

sensors are transmitting accurately within acceptable limits. This 

is usually done through a process called inference. Inference 

involves comparing the sensor value with a calculated value from 

the process equations. The processes involved in instrumentation 

calibration are explained in NP-T (20080  extensive  research  in 

the areas of sensor validation are available in literature and differ- 

ent techniques have been used such as in the work of Gribok et al. 

(2000) where they developed techniques in regularizing statistical 

approaches to sensor validation. Hines et al. (1996), Xu et al. (1999) 

and Dorr et al. (1996) also used neural network based methods in 

Instrument Calibration Monitoring. One of the common cause of 

sensor failure has been identified to be because of miscalibration 

due to human error. Employing on-line calibration monitoring will 

not only reduce miscalibration it will also minimise exposure of 

personnel to radiation. This will lead to both increased safety, 

reduced false alarms and maintenance cost reduction (NP-T, 2008) 

The different condition monitoring techniques when compared 

with the traditional approaches gave better performances. Most of 

these techniques are automated non-destructive and performed 

on-line while the plant is still in operation, which brings about 

more effective plant monitoring, reduced human errors and human 

exposure to radiation. This ultimately enhances safety and cost- 
effective maintenance. 

 
4. State of fault detection in the nuclear industry 

In CBM after monitoring the condition of the plant, the next 

stage is fault detection. Fault detection is based on the output of 

the monitored condition of the plant. Anomalies are detected when 

data from the different monitoring techniques are analyzed. This 

section explores the state of fault detection envisioned and imple- 

mented in the nuclear industry. Many of the monitoring system 

discussed in the previous section are able to detect faults and many 

others are being discussed in this section. Since the early 1990s, a 

lot of work has been done with the aim of improving protection 

system dependability and improving plant uptime and economics. 

Parisini (1997) presented  a  simulation-based  fault  identifica- 

tion method. Parisini first developed an accurate nonlinear model 

of a section of a real 320 MW power plant. They modelled the most 

frequent faults that may occur in plants within the framework of 

that global method. The fault identification method worked in 

real-time and provided the plant technicians with crucial informa- 

tion on the plant behaviour. Fault detection and the diagnosis were 

accomplished in a conventional way. Parisini recognized the effect 

of the control system acting on the fault and created signatures of 
the secondary effect of these control responses. 

Leger et al. (1998) developed a fault detection system combin- 

ing cumulative summation (CUSUM) control charts and artificial 

neural. They tested their method on a model of the heat transport 

system of a CANDU nuclear reactor. Their result showed that their 

method was feasible. They were able to eliminate false alarms at 

steady state. They were able to detect six (6) fault conditions 

promptly. 

Muñoz and Sanz-Bobi (1998) proposed a fault detection system 

that based on the probabilistic radial basis function network. The 

probabilistic radial basis function network is a neural network 

model, which is able to estimate I/O mappings and probability den- 

sity functions. The fault detection system was able to prevent false 

alarms by detecting unknown operating conditions. 

Afonso et al. (1998) conducted an experimental evaluation of an 

automatic procedure for sensor fault detection and identification in 

a real process under closed-loop control. A scheme that is very 
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robust to faults in the main sensors of a multi-loop control system 

is proposed with the aim of improving safety and reliability  of plant 

operations. A state variable transformation was carried out in 

order to derive a model suitable for recursive least squares iden- 

tification valid for all regimes of operation. The fault detection 

method was based on a  moving  window  statistical  analysis  of the 

estimated model parameters. At the same time, a state estima- tion 

scheme, based on the extended Kalman filter, enabled the fault 

identification, reduced false alarms and provided redundant mea- 

surements for alternative control purposes. Experimental runs 

were carried out in an industrial-scale pilot plant. Despite the large 

number of uncertainties and nonlinearities in the process, the sys- 

tem exhibited a good performance when faults occurred in the sen- 

sors of the control loops. 
Evsukoff and Gentil (2005) in their work presented recurrent 

neuro-fuzzy systems for fault detection and isolation in nuclear 

reactors. Their results showed that the recurrent topology showed 

better generalization performance for the detection and isolation of 

a number of security-related faults. They presented their results by 

making a qualitative representation of symptoms and diagnos- tics 

using coloured shades, which changed with time making a friendly 

interface for efficient communication with operators in charge of 

the process safety. 

Zhao and Upadhyaya (2005) presented an integrated fault 

detection and isolation technique which used an adaptive fuzzy 

inference causal graph. This technique was for field devices, which 

comprised of controllers, sensors and actuators in NPPs. Fault 

detection and isolation was achieved by monitoring the residuals 

and cause-effect reasoning conducted. They demonstrated their 

method on the steam generator system of a pressurized water 

reactor (PWR). They were able to isolate both simple and complex 

faults even at the early fault stages irrespective of fault magnitudes 

and initial power level. 

The replacement of the traditional analogue-based safety- 

related control and instrumentation (C&I) systems in NPPs with 

modern digital-based systems has prompted (Lee et al., 2006b) to 

develop a safety assessment system for a digitalized system where 

they replaced the integrated circuit components with a C++ based 

hardware. Their evaluation involved getting the error detection cov- 

erage and the fault tolerance. Their focus was primarily on the NPP 

digital plant protection system. From experiments carried out, they 

confirmed their safety assessment system was able to evaluate the 

error detection coverage and the fault-tolerance in NPPs. 

Du and Jin (2007) developed a fault detection system using 

principal component analysis (PCA) to detect single sensor faults 

in heating, air-conditioning and ventilation systems. The PCA is a 

recognized statistical modelling method. Their fault detection sys- 

tem was able to detect and isolate a single sensor fault and this can 

be done while the plant is in operation. The PCA was also combined 

with data reconciliation by Amand et al., (2001) in developing a 

fault detection system with increased efficiency, he  introduced data 

reconciliation in the first stage of the PCA projection matrix. The 

method was applied on raw process data. Its efficiency depended 

on the on the number of  components  monitored. Baraldi et al. 

(2010) also developed a PCA based early fault detec- tion system 

used for identifying faulty sensors and correcting their measured 

values. The technique developed was based on the sequential 

probability ratio test. They demonstrated this method using a 

simulated case study of the pressurizer pressure and level control 

of PWR. 

 

5. State of fault diagnostics in the nuclear industry 
Diagnostics is the next stage in CBM after detection. Fault diag- 

nostics is aimed at not just detecting a fault but characterizing the fault. 

Diagnostics is focused on determining the location and mag- nitude of 

the existing fault. Upadhyaya et al. (2003) addressed eco- nomic and 

reliability concerns in existing and new generation NPPs. They pointed 

out they needed to overcome the problem of unscheduled downtime, 

improve the overall plant performance, and work on the long-term 

management of  critical  assets.  This can be achieved by developing and 

adopting an integrated approach for control, monitoring, detection and 

diagnosis of plant components such as sensors, actuators, control 

devices and other equipment. Over the years a lot of work has gone into 

developing diagnostic methods and tools in the nuclear industry, an 

overview of this research is presented in this section. 

A review of applications of fault detection and diagnosis meth- 

ods in NPPs was carried out by Ma and Jiang (2011) in which that 

the nuclear plant industry has a strong interest in employing fault 

detection and diagnostics (FDD) methods for improving their 

plant’s safety, reliability, and availability. They described the vari- 

ous modelling techniques applied in fault diagnosis, which they 

classified into model-based methods, data-driven methods, and 

signal-based methods. They investigated  the  principles  behind the 

different approaches used and examined their various applica- 

tions in the nuclear plant industry. They believe that the applica- 

tion of FDD in nuclear applications will continue to increase as 

new advanced FDD techniques continue to emerge and the safety 

and reliability requirement for NPP tightens. 
Patton (1997) investigated the robustness in model-based diag- 

nostics with aim of providing a rapid and reliable detection and 

isolation of system faults when the plant under control is dis- 

turbed, and when the mathematical model upon which the diagno- 

sis is based cannot effectively reproduce the full  dynamic operation 

of the plant. 

Later, Kim and Seong (2000) proposed a fault diagnostic system 

(FDS) that could act as an operator decision support system. The 

system was designed to increase the efficiency of the NPP and 

reduce the human error, which results to NPP accidents. 

Simani and Fantuzzi (2000) combined the neural networks and 

the model–based Kalman filter in developing an FDS. During the 

same time (Chen and Howell, 2001) proposed an FDD method based 

on control system theories in identifying steady-state errors in 

NPPs. The approach can be implemented on virtually all types of 

process plants, open loop stable or not. Based on this method they 

were able to derive cause-effect knowledge and fault isolation pro- 

cedures that considered factors like the interactions between con- 

trol systems, and the availability of non-control-loop-based sensors. 

Power and Bahri (2004) emphasized an FDD approach based on 

dynamic fault data and a two-step fault detection and diagnosis 

framework for early fault detection. This method outperformed 

other alternative methods because it can be  applied  to  large- scale 

systems without the need for excessive computing; the approach 

also gave early fault detection and localization. 

In the same year (Lu and Upadhyaya, 2005) developed an 
advanced fault detection and isolation (FDI) technique using a 
principal component analysis algorithm for the steam generator 
system of a typical (PWR) plant. The results demonstrated the 
implementation of the FDI algorithm for both instrument and actu- 
ator monitoring. 

Kim et al. (2006) developed a fault diagnostic system for the NPP 
digital systems. They employed a simulated fault injection method 
in evaluating the faults coverage on the digital systems. They used 
their methods on the 5 th and 6 th Units of the Ulchin NPP local 
coincidence logic processor for a digital plant protection system. 
Their experiments showed that their method could effec- tively 
quantify faults coverage for critical digital systems. 

Rocco S and Zio (2007) developed a method for classifying tran- 
sients in NPPs using the support vector machine approach. This 
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method was used in differentiating the transients in nuclear sys- 

tems. This they achieved by applying different classes of support 

vector machine (SVM) in a hierarchal structure. One-class  SVM was 

used to classify  unknown  anomalies  and  the  multi-class SVM was 

used to classify unknown anomalies. They applied their method to 

the feed water system of a boiling water reactor using measured 

data from the HAMBO simulator of the Forsmark-3 nuclear power 

plant in Sweden. Using this method in transient classification will 

help in the interpretation of events in the plant and reduce the risk 

of misclassification. 

Berton and Hodouin (2007) completed a model-based FDI sys- 

tem to evaluate plant measurements. The method is also used for 

control, optimisation, process observation and data reconciliation. 

The technique was illustrated for a mineral separation plant. The 

method resulted in efficiently detecting faults during process tran- 

sitions, even when the dynamic model is not exactly known. 

Du Rand et al. (2009) from the North West University in South 

Africa developed an enthalpy–entropy (h-s) graph approach in fault 

detection. This approach was actualized for the main power system 

(MPS) of a pebble bed modular reactor (PBMR). This approach 

involved classifying faults in the main power system from fault 

patterns by applying the comparison between the actual plant and 

reference graphs. Their method was demonstrated for four single 

and two multiple fault conditions during normal power operation 

of the plant. Their result showed that all examined sys- tem 

malfunctions can be correctly classified with the hAs graph 

approach, using only single reference fault signatures. 

To diagnose transients in NPPs, Mo et al. (2007) proposed a 

dynamic neural network aggregation (DNNA) model which devel- 

oped to detect, classify and predict transients in NPPs. The system 

tries to overcome the problem of limited reliability of the single 

general- purpose neural networks by adopting a two-level classifier 

architecture with a DNNA model. The system, when compared with 

the conventional ANN methods, gave better diagnostic results. 

Razavi-Far et al. (2009) also used neuro-fuzzy networks based 

scheme but did not use fault classification in their approach. Their 

study was implemented for fault diagnostics in an NPP U-tube steam 

generator NPP. The applied two types of neuro-fuzzy net- works. 

The neural network’s training was done using data collected from a 

full-scale U-tube steam generator simulator and used for generating 

residuals in the fault detection step. A locally linear neuro-fuzzy 

model is used in the identification of the steam gener- ator. With 

their approach, they were able to make a qualitative 

characterization of the fault. 

Cilliers (2013) and Cilliers and Mulder (2012) developed a fault 

diagnostic system (FDS), which was based on the behaviour of the 

nuclear power plant control system. They developed this control 

system based method by taking into consideration how the PWR 

closed loop control system operates. They noticed that when a small 

fault is introduced into the system  the  control  system  in the closed 

loop acts to compensate for the fault by actuating a sys- tem that 

overrides the fault. This action makes the system continue to 

operate without shutting down. In their research, they analyzed the 

actions of the control system based on this characteristic of the 

control system acting, and by so doing; they were able to detect 

faults. This approach focused on improving the existing fault detec- 

tion methods and plant dependability by detecting faults that are 

of such a small magnitude that they would go undetected when 

comparing plant measurements to a reference such as expected 

operating points or even a simulator predicting the expected oper- 

ating point. This FDS method can detect faults during transients 

when operating point references are usually unavailable. It can also 

detect faults that have not been preconceived and simulated to 

provide a reference fault signature. This they achieved by introduc- 

ing a plant diagnostic system (PDS) between the plant and the sim- 

ulator. The PDS continuously compared the plants parameter 

measured values with the simulator pre-determined values. The 

system made use of the information provided by the model refer- 

ence adaptive control system that is used in nuclear plants to 

maintain the operating point of the desired  reference to  detect and 

characterize faults that occur in the system. They also pro- posed the 

use of the NPP simulator in providing a dynamic refer- ence, which is 

very important for their FDS.  Ayo-Imoru  and Cilliers (2017) further 

discussed the requirements to enable the NPP simulator to be used 

effectively as a dynamic reference for fault diagnostics. 

 

6. State of prognostics in the nuclear industry 
One basic step in prognostics, is understanding the process 

involved, which begins with the proper definition of prognostics. 

The absence of a unified definition of prognostics is one of the chal- 

lenges in prognostics (Coble, 2010). Some notable definitions from 

literature include that of Pham et al. (2012) that defines Prognosis 

as the estimation of the expected remaining useful life (RUL) and 

the associated uncertainties while (ISO-13381-1, 2004) defined 

prognosis as estimation of time to failure and risk for one or more 

existing and future failure modes. Wheeler et al. (2009) defines it as 

the ability to detect, isolate and diagnose faults in components as 

well as predict and trend the accurate remaining useful life of those 

components degradation before eventual failure occurs. Saxena et 

al. (2010) describes prognostics as predicting the remaining useful 

life of a system from the inception of a fault based on a continuous 

health assessment made by direct or indirect observation from the 

ailing system. Suhir (2011) also, defines prog- nostics as the ability 

to predict the remaining useful life after a cer- tain malfunction is 

detected or anticipated. Daigle and Goebel (2011) says prognostics 

is concerned with determining the health of system components 

and making an end of life and remaining useful life predictions. The 

underlying factors in these definitions are that prognosis is used for 

prediction, is an estimation of time, and there is common event 

‘‘failure”. These factors have given rise to the definition of 

prognostics for the purpose of this research as the prediction of the 

time to failure and associated uncertainties of a component. 
Prognostics is a very important aspect of CBM as it will help the 

operator and maintenance personnel to better understand how to 

schedule maintenance and also results in cost-effective mainte- 

nance. Prognostics depends largely on the stages of CBM (monitor- 

ing, detection and diagnostics) as the accuracy of the monitoring 

technique will affect RUL estimation. Prognostics cannot be done 

in isolation and that it relies on the  output  of  diagnostics (Sikorska 

et al., 2011). Bechhoefer and He (2012) highlighted four processes 

required for successful prognostics which are:Estimation of 

damage by feature extraction of measured data; Setting a set-point 

for the feature, which, when exceeded, shows the need for 

maintenance; 

Development of a model that can estimate the RUL of the com- 

ponent based on the current state of degradation and the future 

load profile; and 

An estimation of the confidence level of the prognostic method 

used. 

Looking at these steps required for a successful prognostic, it is 

noticed that the first two steps involve diagnosis and the other two 

steps are mainly prognosis. This shows that prognosis takes fault 

diagnosis a step further in condition-based maintenance. Unlike 

diagnostics, prognostics is just beginning to gain attention com- 

pared to other components of CBM and most of its application in the 

nuclear industry are still mainly at the research level and found 

● 

● 

● 

● 



Dogo Rangsang Research Journal                                            UGC Care Group I Journal 

ISSN : 2347-7180                                                             Vol-09 Issue-02 May - August 2019    
  

Page | 764                                                                                         Copyright @ 2019 Authors 
 

 

only little practical applications. Coble et al. (2012) worked on a 

comprehensive review of the technologies and application of prog- 

nostics and Health Management in Nuclear Power Plants. In their 

review, they discussed how prognostics and health management 

(PHM) are been applied in some nuclear power and related sys- tems. 

They discussed also areas where PHM is still under develop- ment. 

They explained the present needs in applying prognostics, the 

challenges, the technical gaps and also highlighted areas of research 

needs for the increased application of PHM in the nuclear industry. 

Other notable research on prognostics on different parts of the 

nuclear plants is further discussed. 
One important step in prognostics is, knowing the parameters 

that are needed for the best RUL estimation. Prognostics involves 

analysing degradation data from the monitored condition of the plant, 

which is then trended for RUL estimation. For better RUL estimation, 

it is good to combine different degradation parameters (Coble and 

Hines, 2008). This is also supported in the work of Barbieri et al., 

where they combined several degradation parame- ters using an 

optimization process to obtain a prognostic parame- ter which was 

trended to estimate the RUL. They used Genetic Algorithm and 

ordinary least square in the optimization process and estimated RUL 

using a using general path model. Their method was validated using 

steady-state data from electric motor acceler- ated degradation 

testing. With their method, they were able to achieve good RUL 

estimate with a percentage error of 5%. 
Coble and Hines (2011) proposed a prognostic method that can 

be applied to components and systems. They combined the Gen- eral 

Path Model (GPM) with dynamic Bayesian updating as one effects-

based prognostic algorithm. The general path model was used for the 

remaining useful life estimation (RUL) by extrapolat- ing of the 

prognostic parameter curve to a critical failure  set- point, then for 

cases where there were only a few data points or where the data was 

contaminated with noise, the Bayesian method was introduced which 

allowed for the inclusion of prior informa- tion. Their method was 

applied to the prognostics challenge prob- lem posed at PHM ’08. The 

results showed that their proposed method performed better than the 

conventional  regression  used in RUL estimation. 
Welz et al. developed a prognostic system which was based on 

Bayesian and Bootstrap Aggregation modelling methods. Their 

method relied on the predicting of the progression of systems 

residual. This method was illustrated using data collected from a heat 

exchanger testbed setup at the University of Tennessee. They relied 

on how the system residuals progressed and how the resid- uals relate 

with the overall system condition. This was used in esti- mating the 

RUL. As a result of restrictions on available data, they employed the 

use of a Leave One Out Cross Validation (LOOCV) method to evaluate 

and validate the effectiveness of their tech- nique. In their study, they 

explored and analyzed different meth- ods that gave an RUL 

estimation with reduced variance and improved accuracy. The results 

of this analysis showed that across all test cases the Bayesian 

transition using Type I priors outper- formed the GPM  with no  

Bayesian  updating,  and resulted in  up to a 99% reduction in 

regression parameter standard deviation. 
Another method to tackle the problem of noise in data used in 

RUL estimation was developed by Djeziri et al. (2015). They devel- 

oped a noise filtering method to extract profiles of trends based on a 

percentile calculation on several levels. The profiles are modelled by a 

gamma process. They used simulation in illustrating their method, 

they also compared their method with other filtering methods based 

on discrete wavelet transform (DWT) and empirical mode 

decomposition (EMD) algorithms, which showed the effec- tiveness 

and applicability to data with noisy trends. This allows one to have a 

probability density function (pdf) of RUL with a con- fidence interval 

(CI) that ensures the safety margins for industrial applications. 

Di Maio and Zio (2010) presented a similarity-based approach 

for prognostics of the Remaining Useful Life (RUL) of a system. In 

the similarity- based method a collection of different failure pat- 

terns that serves as the reference is taken using the different failure 

scenarios of the plant. The condition of the system is then being 

monitored and compared with the library of the reference patterns. 

The RUL is then been estimated using the fuzzy similarity analysis 

and aggregating their times to failure in a weighted sum. This 

accounted for their similarity to the developing pattern. The pre- 

diction on the failure time was dynamically updated as time goes by 

and measurements of signals representative of the system state 

were collected. With this method, on-line RUL estimation is possi- 

ble. They demonstrated this technique on failure scenarios of the 

Lead-Bismuth Eutectic eXperimental Accelerator Driven System 

(LBE-XADS). Their approach gave satisfactory results in the RUL 

accuracy and also in the computing speed. 
McCarter et al. explored an RUL estimation technique for of I&C 

cables in the nuclear plant. They employed the indenter modulus 

(IM) approach in predicting the remaining useful life (RUL). This IM 

technique is a technique that has been accepted by industries for 

monitoring cable condition. The IM technique can be used on-line 

i.e. while the plant is in operation and it is a non- destructive 

technique, which makes it a useful tool for CBM. This method was 

used in an accelerated ageing cable test bed in which they obtained 

several types of measurement parameters for ageing cables. They 

further explained practical techniques in which sim- ple IM 

measurements can be taken advantage of for condition monitoring 

and RUL estimation. Their result from the error analy- sis showed 

that IM technique can give a better RUL estimation compared to the 

conventional methods like simple trending and curve fitting for 

cables. 
Panni et al. (2016) used the Bayesian linear regression model in 

estimating the RUL using the data from an operational steam tur- 

bine of an NPP. An appropriate model for the deterioration under 

study is selected. Results show that the accuracy of the technique 

varies due to the nature of the data that is utilized to estimate the 

model parameters. 

 
7. Modelling techniques for CBM 

In the different parts of the CBM discussed one recurring step in the 

methods used in condition monitoring, detection, diagnostics, and 

prognostics are modelling. This section looks at the different 

modelling techniques applied in these processes. The modelling 

techniques generally adopted in CBM can be categorized  into three; 

the physical modelling, empirical modelling and the hybrid 

modelling. These modelling techniques are further described and 

their strengths weaknesses opportunities and threats (SWOT) anal- 

ysis are shown below; 

 
7.1. Physical modelling 

Physical modelling methods are also referred to as model-based 

or physics of failure or behavioural model methods in some litera- 

ture. They involve the use of mathematical relationships of the 

physical behaviour between process parameters to detect process 

or sensor anomalies. This method incorporates the physical under- 

standing of the system into the estimation of the system state. In 

this approach, mathematical equations representing the monitored 

system are derived from first principles. The output of the actual 

process is usually compared with that of the physical model, the 

difference is called residual. When the plant is operating normally, 

the residual should be approximately zero but large residuals sig- 

nify a fault in the system. The physical model usually gives a result 

with minimal uncertainties when accurate models are used but the 
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major setback is obtaining a good model is complicated, a com- 

plete model is usually not available in complex systems and also 

detailed technical knowledge of failure mechanisms is required. 

Reviews on model-based available in the literature are 

(Venkatasubramanian et al., 2003; Chen and Patton, 2012), other 

examples of the physical model applied are the use of particle fil- 

tering for parameter estimation of damage (An et al., 2013). Parti- 

cle filters were also used by Daigle and Goebel (2011) to develop a 

general model based prognostics methodology within a robust 

probabilistic framework. Other works on model-based modelling 

are that of Patton (1997), Simani et al. (2003) also control based 

diagnostics model by Cilliers (2013) and Cilliers and Mulder (2012). 

Examples of model-based techniques in literature are just a handful 

compared to the other modelling techniques. Fig. 3 shows the 

S.W.O.T analysis of the physical modelling method. 

 
7.2. Empirical modelling 

They are also known as data-driven or data-based models. They 

depend on past patterns of the system to determine the state of the 

plant or predict the future state of the plant. Unlike the physical 

models, Data-based models try to define relationships between 

variables by means of data fitting and do not need an understand- 

ing of the physical properties of the variables being compared. They 

can be further categorized into three, artificial intelligent methods, 

statistical based methods, and similarity-based methods. The 

artificial intelligent method uses machine learning tools which 

transforms raw data into relevant information and behaviour mod- 

els examples are neural networks (Atiya et al., 1999; Simani and 

Fantuzzi,  2000;  S,eker  et  al.,  2003),  Bayesian  networks  (Pingfeng 

and Byeng Dong, 2008), Markov processes (Fleming, 2004; 

Kacprzynski et al., 2004; Bechhoefer et al., 2006). The artificial 

intelligent methods mostly depend on previous patterns of abnor- 

malities of systems that are alike and based on these data the future 

condition of the system is projected. The quality and quan- tity of 

system history data required for data-driven method make it a 

challenging task in real applications (Liu et al., 2012). 
The statistical-based methods rely on available data based on 

past observations examples are proportional hazard modelling 

PHM (Vlok et al., 2002), Autoregressive moving average (ARMA) 

(Yan et al., 2004),  principal  component  analysis  PCA  (Amand et 

al., 2001; Du and Jin, 2007; Baraldi et al., 2010), proportional 

 

  
 

 
Fig. 3. SWOT analysis of the physical modelling technique. 

 

 

 

Fig. 4. SWOT analysis of the empirical modelling technique. 
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covariate model PCM,  support  vector  regression  SVR  (Agarwal et 

al., 2015). 

Similarity-based methods weigh the comparison between an 

observed present situation and a library of failure patterns exam- 

ple are fuzzy systems (Zio et al., 2010) and expert systems. 

The major setback with the data-driven approach is that they 

cannot handle unanticipated failures and because of the quality and 

quantity of data required in computation, which might be dif- ficult 

to obtain. Fig. 4 shows the SWOT analysis of the empirical modelling 

approach. 

 
7.3. Hybrid models 

Hybrid approaches are developed to combine the strength of one 

or more approaches and to limit their weaknesses. This approach 

integrates the strength of the ensemble methods thereby giving 

estimations that are more reliable. Some application of hybrid 

approaches are the combination of Kalman filters and neu- ral 

methods for fault diagnostics of industrial processes by Simani and 

Fantuzzi (2000), Neuro-fuzzy method used by Wang et al. (2004) 

for prognosis of machine health conditions and gave better 

RUL estimation than the time-delayed neural network. Liu et al. 

(2012) developed a hybrid method to improve the accuracy of sys- 

tem state long-horizon forecasting by combining model-based par- 

ticle filtering approach and a data-driven predictor based on 

Bayesian learning. This approach was used to predict the RUL of 

lithium-ion batteries. Si et al. (2013) combined Bayesian updating 

method and expectation maximisation algorithm in RUL estima- 

tion. Fig. 5 shows the SWOT analysis of the hybrid modelling 

approach. 

 

8. SWOT analysis of CBM application in nuclear power plants 
CBM has found wider application in other industries like aero- 

space, naval, electronics, chemical,  and  medicine,  compared  to the 

nuclear industry. CBM has various advantages and also chal- lenges. 

This section highlights the possible strengths, weaknesses, 

opportunities, and threats in applying CBM in the nuclear power 

plant considering the uniqueness of the nuclear plant. Fig. 6 shows 

the SWOT analysis of the application of CBM in the nuclear industry. 

 

  
 

 

Fig. 5. SWOT analysis of the hybrid modelling technique. 

 

 

 
Fig. 6. SWOT Analysis of CBM application in NPPs. 
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9. Conclusion 
This paper has presented a survey on the state of condition- 

based maintenance (CBM) in the nuclear industry. From this sur- 

vey, it is seen that CBM has been widely used and successfully 

applied in other industries. The nuclear industry is unique due to 

safety-related issues and this must be put in consideration before 

completely adopting a different maintenance strategy. Therefore, 

CBM should be systematically adopted in the nuclear plant 

starting with components and systems that are of lesser safety 

concern. This paper has explored the different stages of CBM and 

high- lighted recent research that has been done. From these 

studies, several opportunities exist that the nuclear plant can 

explore in implementing CBM these have been summarised in a 

SWOT anal- ysis of the different techniques of CBM in the nuclear 

power plant. This paper gives maintenance stakeholders and 

researchers an overview of the current practices and extent of 

research under- taken on condition-based maintenance in the 

nuclear industry. 
Based on this review the authors aim to research further 
on 

developing a hybrid prognostic system to enhance CBM in NPP. 

This they hope to achieve by harnessing and combining the 

control- based fault diagnostic system developed by Cilliers and 

Mulder (2012), with other data-driven approaches. This is 

because of the strength of the control-based fault diagnostic 

system which is, early, accurate fault detection and it can used in 

transients combined with the simplicity of the data-driven 

approach which does not require the understanding of the plant’s 

physics of failure. This hybrid sys- tem is expected to give a more 

accurate plant prognosis for CBM. 
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