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Abstract 

Web search engines are composed by thousands of query processing nodes, i.e., 

servers dedicated to process user queries. Such many servers consume a significant 

amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low 

latencies, since users expect sub-second response times (e.g., 500 ms). However, users 

can hardly notice response times that are faster than their expectations. Hence, we 

propose the Predictive Energy Saving Online Scheduling Algorithm (PESOS) to select the 

most appropriate CPU frequency to process a query on a per-core basis. PESOS aim at 

process queries by their deadlines and leverage high-level scheduling information to 

reduce the CPU energy consumption of a query processing node. PESOS base its decision 

on query efficiency predictors, estimating the processing volume and processing time of a 

query. We experimentally evaluate PESOS upon the TREC ClueWeb09B collection and 

the MSN2006 query log. Results show that PESOS can reduce the CPU energy 

consumption of a query processing node up to ∼48% compared to a system running at 

maximum CPU core frequency. PESOS outperform also the best state of the-art 

competitor with a ∼20% energy saving, while the competitor requires a fine parameter 

tuning and it may incur in uncontrollable latency violations.  

 

Keywords: Energy consumption, CPU Dynamic Voltage and Frequency Scaling, Web 

search engines.  

 

1. Introduction 

Web search engines continuously crawl and index an immense number of Web pages 

to return fresh and relevant results to the users‟ queries. Users‟ queries are processed by 

query processing nodes, i.e., physical servers dedicated to this task. Web search engines 

are typically composed by thousands of these nodes, hosted in large data centers which 

also include infrastructures for telecommunication, thermal cooling, fire suppression, 

power supply, etc [1]. This complex infrastructure is necessary to have low tail latencies 

(e.g., 95-th percentile) to guarantee that most users will receive results in sub-second 

times (e.g., 500 ms), in line with their expectations [2]. At the same time, such many 

servers consume a significant amount of energy, hindering the profitability of the search 

engines and raising environmental concerns. In fact, data centers can consume tens of 

megawatts of electric power [1] and the related expenditure can exceed the original 

investment cost for a data center [3]. Because of their energy consumption, datacentres 

are responsible for the 14% of the ICT sector carbon dioxide emissions [4], which are the 

main cause of global warming. For this reason, governments are promoting codes of 

conduct and best practices [5], [6] to reduce the environmental impact of data centers.  

Since energy consumption has an important role on the profitability and environmental 

impact of Web search engines, improving their energy efficiency is an important aspect. 

Noticeably, users can hardly notice response times that are faster than their expectations 

[2]. Therefore, to reduce energy consumption, Web search engines should answer queries 

no faster than user expectations. In this work, we focus on reducing the energy 
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consumption of servers‟ CPUs, which are the most energy consuming components in 

search systems [1]. To this end, Dynamic Frequency and Voltage Scaling (DVFS) 

technologies [7] can be exploited. DVFS technologies allow to vary the frequency and 

voltage of the CPU cores of a server, trading off performance (i.e., longer response times) 

for lower energy consumptions. Several power management policies leverage DVFS 

technologies to scale the frequency of CPU cores accordingly to their utilization [8], [9]. 

However, core utilization-based policies have no mean to impose a required tail latency 

on a query processing node. As a result, the query processing node can consume more 

energy than necessary in providing query results faster than required, with no benefit for 

the users.  

In this work we propose the Predictive Energy Saving On-line Scheduling algorithm 

(PESOS), which considers the tail latency requirement of queries as an explicit parameter. 

Via the DVFS technology, PESOS select the most appropriate CPU frequency to process 

a query on a per-core basis, so that the CPU energy consumption is reduced while 

respecting a required tail latency. The algorithm bases its decision on query efficiency 

predictors rather than core utilization. Query efficiency predictors are techniques to 

estimate the processing time of a query before its processing. They have been proposed to 

improve the performance of a search engine, for instance to take decision about query 

scheduling [10] or query processing parallelization [11], [12]. However, to the best of our 

knowledge, query efficiency predictor has not been considered for reducing the energy 

consumption of query processing nodes  

We build upon the approach described in [10] and propose two novel query efficiency 

predictor techniques: one to estimate the number of postings that must be scored to 

process a query, and one to estimate the response time of a query under a particular core 

frequency given the number of postings to score. PESOS exploit these two predictors to 

determine which is the lowest possible core frequency that can be used to process a query, 

so that the CPU energy consumption is reduced while satisfying the required tail latency. 

As predictors can be inaccurate, in this work we also propose and investigate a way to 

compensate prediction errors using the root mean square error of the predictors.  

We experimentally evaluate PESOS upon the TREC ClueWeb09 corpus and the query 

stream from the MSN2006 query log. We compare the performance of our approach with 

those of three baselines: perf [8], which always uses the maximum CPU core frequency, 

power [8], which throttles CPU core frequencies according to the core utilizations, and 

cons [13], which performs frequency throttling according to the query server utilization. 

PESOS, with predictors correction, is able to meet the tail latency requirements while 

reducing the CPU energy consumption from ∼24% up to ∼44% with respect to perf and 

up to ∼20% with respect to cons, which however incurs in uncontrollable latency 

violations. Moreover, the experiments show that energy consumption can be further 

reduced by PESOS when prediction correction is not used, but with higher tail latencies. 

 

2. Related Work 

In the past, a large part of a data center energy consumption was accounted to 

inefficiencies in its cooling and power supply systems. However, Barroso et al. [1] report 

that modern data centers have largely reduced the energy wastage of those infrastructures, 

leaving little room for further improvement. On the contrary, opportunities exist to reduce 

the energy consumption of the servers hosted in a data center. In particular, our work 

focuses on the CPU power management of query processing nodes, since the CPUs 

dominate the energy consumption of physical servers dedicated to search tasks. In fact, 

CPUs can use up to 66% of the whole energy consumed by a query processing node at 

peak utilization [1].  
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Modern CPUs usually expose two energy saving mechanism, namely C-states and P-

states. C-states represent CPU cores idle states and they are typically managed by the 

operating system [14]. C0 is the operative state in which a CPU core can perform 

computing tasks. When idle periods occur, i.e., when there are no computing tasks to 

perform, the core can enter one of the other deeper C-states and become inoperative. 

However, Web search engines process a large and continuous stream of queries. As a 

result, query processing nodes are rarely inactive and experience particularly short idle 

times. Consequently, there are little opportunities to exploit deep C-states, reducing the 

energy savings provided by the C-states in a Web search engine system [15], [16].  

When a CPU core is in the active C0 state, it can operate at different frequencies (e.g., 

800 MHz, 1.6 GHz, 2.1 GHz, . . . ). This is possible thanks to the Dynamic Frequency and 

Voltage Scaling (DVFS) technology [7] which permits to adjust the frequency and 

voltage of a core to vary its performance and power consumption. In fact, higher core 

frequencies mean faster computations but higher power consumption. Vice versa, lower 

frequencies lead to slower computations and reduced power consumption. The various 

configurations of voltage and frequency available to the CPU cores are mapped to 

different P-states and are managed by the operating system. For instance, the intel_pstate 

driver [8] controls the P-states on Linux systems and can operate accordingly to two 

different policies, namely perf and power. The perf policy simply uses the highest 

frequency to process computing tasks. Instead, power selects the frequency for a core 

according to its utilization. When a core is highly utilized, power selects a high frequency. 

Conversely, it will select a lower frequency when the core is lowly utilized.  

However, Lo et. al [15] argue that core utilization is a poor choice for managing the 

cores frequencies of query processing nodes. In fact, the authors report an increase of 

query response times when core utilization-based policies are used in a Web search 

engine. For such reason, Catena et al. [13] propose to control the frequency of CPU cores 

based on the utilization of the query processing node rather than on the utilization of the 

cores. The utilization of a node is computed as the ratio between the query arrival rate and 

service rate. Then, they propose the cons policy which throttles the frequency of the CPU 

cores when the utilization of the node is above or below certain thresholds (e.g., 80% and 

20%, respectively). The frequency is selected so to produce a desirable utilization level 

(e.g., 70%). Similarly, in our work we control the CPU cores frequencies of a query 

processing node using information related to the query processing activity rather than to 

the CPU cores utilization. To this end, we build our approach on top of the acpi_cpufreq 

driver [9]. This driver allows applications to directly manage the CPU cores frequency, 

instead of relying on the operative systems.  

Query efficiency predictors (QEPs) are techniques that estimate the execution time of a 

query before it is actually processed. Knowing in advance the execution time of queries 

permits to improve the performance of a search engine. Most QEPs exploit the 

characteristics of the query and the inverted index to pre-compute features to be exploited 

to estimate the query processing times. For instance, Macdonald et al. [10] propose to use 

term-based features (e.g., the inverse document frequency of the term, its maximum 

relevance score among others) to predict the execution time of a query. They exploit their 

QEPs to implement on-line algorithms to schedule queries across processing node, in 

order to reduce the average query waiting and completion times. The works [11], [12], 

instead, address the problem to whether parallelize or not the processing of a query. In 

fact, parallel processing can reduce the execution time of long-running queries but 

provides limited benefits when dealing with short-running ones. Both the works propose 

QEPs to detect long-running queries. The processing of the query is parallelized only if 

their QEPs detect the query as a long-running one. Rather than combining term-based 

features, Wu et al. [17] propose to analytically model the query processing stages and to 

use such model to predict the execution time of queries.  
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In our work, we modify the QEPs described in [10] to develop our algorithm for 

reducing the energy consumption of a processing node while maintaining low tail 

latencies. 

3. Proposed Methodology 

In the following, we introduce the operative scenario of a query processing node (Sec. 

3.1), we formalize the general minimum-energy scheduling problem and we shortly 

present the state-of-the-art algorithm to solve it offline (Sec. 3.2), and we discuss the 

issues of this offline algorithm in our scenario (Sec. 3.3). 

 

Figure 1. The architecture of query processing node. 

3.1 Operative scenario  

A query processing node is a physical server composed by several multi-core 

processors/CPUs with a shared memory which holds the inverted index. The inverted 

index can be partitioned into shards and distributed across multiple query processing 

nodes. In this work, we focus on reducing the CPU energy consumption of single query 

processing nodes, independently of the adopted partition strategy. In the following, we 

assume that each query processing node holds an identical replica of the inverted index 

[18]. A query server process is executed on top of each of the CPU core of the processing 

node (see Figure 1). All query servers access a shared inverted index held in main 

memory to process queries. Each query server manages a queue, where the incoming 

queries are stored. The first query in the queue is processed as soon as the corresponding 

CPU core is idle. The queued queries are processed following the first come first served 

policy. The number of queries in a query server’s queue represents the server load. 

Queries arrive to the processing node as a stream S = {q1, . . . , qn}. When a query 

reaches the processing node it is dispatched to a query server by a query router. The query 

router dispatches an incoming query to the least loaded query server, i.e., to the server 

with the smallest number of enqueued queries. Alternatively, the query processing node 

could have a single query queue and dispatch queries from the queue to idle query 

servers. In this work, we use a queue for each query servers since a single queue will not 

permit to take local decisions about the CPU core frequency to use for the relative query 

server. A similar queue-per core architecture is assumed in [19], to schedule jobs across 

CPU cores to minimize the CPU energy consumption, and in [10]. 
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Figure 2. The example of YDS scheduling, (top) input jobs, (bottom) 

resulting optimal schedule with CPU speeds  . 

3.2 The minimum-energy scheduling problem  

Consider the following scenario, where a single core CPU must execute a set     
             of generic computing jobs rather than queries. Jobs must be executed over a 

time interval        . Each job    has an arrival time    and an arbitrary deadline    which 

are known a priori. Moreover, each job    has a processing volume   , i.e., how much 

work it requires from the CPU, and jobs can be pre-empted. The CPU can operate at any 

processing speed      (in time units per unit of work) and its power consumption is a 

convex function of the processing speed, e.g.,           with     [7]. Jobs in J must 

be scheduled on the CPU. A schedule is a pair of functions         denoting, 

respectively, the processing speed and the job in execution, both at time t  

A schedule is feasible if each job in   is completed within its deadline. The minimum-

energy scheduling problem (MESP) aims at finding a feasible schedule such that the total 

energy consumption is minimized, i.e., 

 

Figure 2 shows an example for YDS. Input jobs are illustrated in the upper part of the 

picture. The left end of a box indicates the arrival time of the job, while the right end 

indicates its deadline. Processing volumes for the jobs are reported inside the relative 

boxes. The bottom part of the picture illustrates the optimal solution provided by YDS. 

The picture shows the order in which the jobs are scheduled, their start and end time, and 

the processing speeds s used for each job. Note that    is executed over two different time 

intervals, as it is pre-empted to schedule    and   , which have a higher joint intensity.  

3.3 Issues with YDS  

YDS finds an optimal solution for the MESP but poses various issues that make 

difficult to use it in a search engine to reduce its energy consumption:  

1) YDS is an offline algorithm to schedule generic computing jobs and cannot be used 

to schedule online queries. In fact, YDS input is the set of jobs to be scheduled in a 

interval, with their arrival times and deadlines, that must be known a priori. In contrast, 

query arrival times are not known until query arrives. Moreover, YDS relies on EDF, 

which contemplates job pre-emption. Context switch and cache flushing cause time 

overheads with non-negligible impacts on the query processing time. Therefore, pre-

emption is unacceptable for search engines.  

2) YDS requires to know in advance the processing volumes of jobs. Conversely, we 

do not know how much work a query will require before its completion.  
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3) YDS schedules job using processing speeds (defined as units of work per time unit). 

The speed value is continuous and unbounded (i.e., the speed can be indefinitely large). 

However, the frequencies available to CPU cores are generally discrete and bounded. For 

such reasons, in the following Section we modify YDS in order to exploit it in a search 

engine. 

 

4. Conclusions 

In this paper we proposed the Predictive Energy Saving Online Scheduling (PESOS) 

algorithm. In the context of Web search engines, PESOS aim to reduce the CPU energy 

consumption of a query processing node while imposing a required tail latency on the 

query response times. For each query, PESOS select the lowest possible CPU core 

frequency such that the energy consumption is reduced, and the deadlines are respected. 

PESOS select the right CPU core frequency exploiting two different kinds of query 

efficiency predictors (QEPs). The first QEP estimates the processing volume of queries. 

The second QEP estimates the query processing times under different core frequencies, 

given the number of postings to score. Since QEPs can be inaccurate, during their training 

we recorded the root mean square error (RMSE) of the predictions. In this work, we 

proposed to sum the RMSE to the actual predictions to compensate prediction errors. We 

then defined two possible configurations for PESOS: time conservative, where prediction 

correction is enforced, and energy conservative, where QEPs are left unmodified. 
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