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In this article, we describe brand-new numerical strategies for dealing with both linear and nonlinear ordinary 

differential equations. To create a new family of numerical methods, we use the Daftardar-Gejji methodology 

on the theta-method. It is demonstrated that the formulation of the approach is equivalent to that of a Runge-

Kutta method. Analyses are done on the approaches' stability. 
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Introduction 
 

Numerical methods are one of the main techniques used for solving differential equations. For   many years, 

the construction of accurate and stable numerical methods for the solutions of ordinary differential 

equations (ODEs) with initial value problems has been considered widely and with great new 

contributions. Recently, the method proposed by Daftardar-Gejji and Jafari (DJM) [1] is powerful technique 

for solving a wide range   of   nonlinear    equations,    see    [2,    3,    4,    5,    6,    7,    8,    9,    10,    

11,    12,    13,    14]. In this paper, we employ the (DJM) to construct a new family of numerical scheme for 

solving ordinary differential equations and discuss error, stability and convergence of the proposed 

methods. 

 

1 Daftardar-Gejji and Jafari Method 

To illustrate the basic concept of the new iterative method, we consider the following general 

nonlinear system 

 

where f is a given function, L and N are linear and nonlinear operators respectively. It is assumed 

that the [DJM] solution for the Eq. (1) has the form: 

 

Since L is linear 
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The nonlinear operator N in Eq. (1) is decomposed by [DJM] as bellow: 

 

 

Using Eqs. (2), (3) and (4) in Eq. (1), we get 

 

 

The DJM series terms are generated as bellow: 

 

 

 

 

The k-term approximate solution is given by 

 

 

for suitable integer k. 

 

3. New Family of Numerical Methods 

 

Consider the initial value problem 
 

 

Where 

 

Recently, J. Patade et al [15] proposed new method by applying [DJM]on the implicit trapezium method to 

get a new second order formula and denoted

 by[NNM]. Now, let us consider the famous family of methods, called by θ-methods which has the 

following formula 
 

 

We can take different value of θ in formula (10) to generate many of methods, for example: 

 

 
Explicit Euler

 method; Implicit Trapezoidal rule; 

 

Implicit Euler method. 
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We can rewrite formula(10) as the form of(1) by consider 

 

 

Now, let us apply [DJM] on (10) to get 3-term solution as 
 

which is 

 

 

Or 
 

Therefore, we obtain a new family of θ method. However, the new family can be formulated 

in 

an equivalent way as a RungeKutta method as follow 

 

 

where 
 

 

Now, to obtain some examples for the new family we choose some different values of θ in 

(12) 

as follow: 

 

for θ = 0, we get 
 

Where 
 

for θ = 1/2, we get 
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where 

 

which is the method proposed in [15]. for θ = 3/4, we get 

 

 
where 

 

 

for θ = 1, we get 

 

 

Where 

 

 

Theorem. The new family defined by (12) and (14) are of Second order if θ = 1/2, and first order 

for any another choice of θ. 

 
Proof: The Taylor series expansion of yj+1 may be written as 

 

 

Notice that for simplicity of the algebra f have been considered as a function of y only, without loss of 

generality. This will considerably reduce the Taylor series expansions of ki, i = 1, 2, 3, in (12) to the following 

 

Traditionally, the equation (19), (20) and (21) would be substituted in (14) to obtain an expression of 

yj+1. 

Since the error of the method can be measured using the expression 

 

 

therefore, 
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Clearly, by choosing θ = 1 /2 we get 
 

which is mean the method is second order, otherwise its first order. 

 

Definition. [16] A scheme is said to be consistent if the difference of the computation formula 

exactly approximates the differential equation it tends to solve. 

 

Theorem. The new family of modified θ method is consistent. 

 
Proof: Subtract yj on both sides of (14), and we have: 

 

 

Dividing all through by h and taking limit as h tend to zero on both sides, we have 

 

 

 

 

Hence, the method is consistent. 

 

4. The Stability Function for The New Modification Methods 

 

In order to validate the stability of the method, the equation (12) and (14) are substituted in the 

simple test equation 

 

 

we get 

 

 

Substituting (27) in (14) and letting z = hλ, the simplified equation is obtained as follows: 

 

or in more simplified form 
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