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Abstract The phenomenon of time-delay occurs in various real-world, man-made systems and 

engineering applications such as chemical and biological processes, hydraulic systems, and 

manufacturing processes etc. The presence of time-delay tends to degrade the performance of the 

control system. The instabilities due to occurrence of time delay in system adds design complexity 

for controller design and overall analysis of performance. From the literature survey it is observed 

that many researchers tried to design traditional and advanced controller to handle this system 

dynamic. It is also reported that Fractional-order controllers (FOC) are more effective than 

conventional integer-order (IO) controllers.  To ensure a robust closed-loop configuration for time 

delay systems, Bode’s Ideal Loop Transfer Function (BITF) is presented in this paper. The 

performance of BITF based FOC and modified BITF based FOC for three different class of time 

delay systems are compared and analysed. From the simulation results it is observed that the 

performance of BITF based fractional-order controller is more robust than traditional controller. 

 

Keywords Time delay, Bode’s Ideal Loop Transfer Function, Integer-order Controller, Fractional-

order controller. 

 

I. Introduction 

In last few decades, there has been a rise in interest in time-delayed systems from control researchers 

and engineers. Time delay is a typical aspect in the all branches of engineering. It is well known that 

time delays are frequently encountered in electrical, electronic, communication systems, control 

systems, power systems transmission lines and many real world applications. The various industrial 

processes include after effect phenomena in inner dynamics. Actuators, sensors, and field networks 

that are involved in feedback loops introduce unavoidable delays. The theoretical research on delay 

systems is crucial, and is definitely a growing field for researchers. A controller design must be 

worked upon for necessary application in design process for highlighting good properties of time 

delays that can bring about new advances practical design [1][2][3][4]. Integer-order Proportional 

Integral Derivative (PID) controllers are the prominent controllers used in industry for their 

simplicity, robustness, and availability of effective and easy tuning methods based on minimum plant 

model knowledge. 

In recent years, it is observed that there is a rapid increase in number of studies related to 

applications of fractional calculus (FC) theory in many areas. The range of applications covers both 

controller design and synthesis. An exclusive feature expresses real systems better than integer-order 

ones [5][6]. A delay-dependent robust stability for systems with time-varying delay must be 

considered. With the increasing expectations of system dynamic performances, the delay information 

in practical system/process must be observed in the modelling procedure. Time delays often degrade 

the performance of main system. These delays cause instabilities of original systems and make it 

difficult for system analysis. In control theory engineering, improvising or optimizing performance 

plays a major role. Therefore, the aim of the paper is to employ FOC to boost IO dynamic system 
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control performance for integer-order plants, fractional-order plants and plants with time delay 

[7][8][9] [10][11].  

In this paper, Bode’s ideal loop transfer function method is used to design fractional-order 

controllers. The advantage of this control design method is that the closed loop systems step 

responses exhibit an iso-damping property [1] [5] [12-22]. Iso-damping is a desirable system 

property referring to a state, where the open-loop phase Bode plot is flat. For systems that exhibit 

iso-damping property, the overshoots of the closed-loop step responses will remain almost constant 

for different values of the controller gain. This will ensure that the closed-loop system is robust to 

gain variations and to keep phase margin constant, the phase derivative with respect to frequency 

should be zero around the gain cross-over frequency. 

The paper is organized as follows. The modelling of Time delay system is described in section II, 

followed by FOPID controller Design in section III. Further, section IV describes Bode's ideal loop 

transfer function based controller and its basic properties is presented. Finally, section V illustrates 

simulation examples and section VI concludes with general discussion on the results and conclusion. 

 

II. Modelling of Time Delay System 

In numerous control systems, the presence of time delay is a source of instability and oscillation 

creation [22-28]. Systems comprising internal delays represent a class of systems with a very 

complex dynamics characterized by an infinite spectrum, specific responses and characteristics in 

time and frequency domains. Tasks of their control often require the use of unusual solutions that are 

very specific, unlike conventional approaches known for systems with no delay. The presence of 

delays significantly influences the feedback dynamics; especially, it has a decisive impact to stability 

that can be sensitive to even small delay value changes. A considerable amount of the existing 

solutions of time delay controller synthesis is based on highly advanced mathematical operations 

from the field of matrix calculus or calculus of variations, which (from the engineering point of 

view) makes their practical applicability more difficult or even impossible [29-35]. 

The systems can be approximated by an FOPDT model, the different types of Time Delay systems 

are modelled as; 

1. First Order Plus Time Delay (FOPTD) Model 

2. Second Order Plus Time Delay (SOPTD) Model  

The First Order Plus Time Delay system has the following form of mathematical model: 

 𝐺(𝑠) =
𝑘

𝑇𝑠 + 1
𝑒−𝐿𝑠, (1) 

Where, k is the process gain, L and T are the delay and time constant of the system, respectively. The 

process gain k is assumed to be unity since all the systems are normalized; The FOPDT models are 

characterized by a very important parameter called the relative dead time of the system, defined as 

 𝜏 =
𝐿

𝐿 + 𝑇
 , (2) 

Parameter 𝜏  ranges between 0 and 1. Systems in which L >> T are called “delay dominant” and 

systems in which T << L are called “lag dominant”. In this paper, a lag dominated system is 

considered. 

 

III. Controller Design for Time Delay System  

There are numerous types of IO and FO controllers used in various applications depending on the 

application specific requirements. The classical control approaches for time-delay systems are 

summarised as classical proportional–integral–derivative (PID) control, adaptive control, sliding 

mode control, relay control [15-19]. A PID controller consists of three terms/modes/actions: 

proportional, integral and derivative. Different combinations of these terms result in different 

controllers, such as PI controllers and PD controllers. 
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The transfer function representation of the Integer-order PID (IO-PID) controller in parallel structure 

is given in (Eq3), 

 𝐶(𝑠) =  𝐾𝑝 +  
𝐾𝑖

𝑠
+ 𝐾𝐷𝑠, (3) 

Where, 𝐾𝑝, 𝐾𝑖, 𝐾𝐷 are the controller gains.  

A control system is often designed to meet specified gain and phase margins so that the system is 

robustly stable.  

The paper focuses on analysis of FOC. The family of FOPID Controllers types as Fractional-order 

PID controller, CRONE Controllers, Fractional Lead-Lag Compensator. Among them, Fractional-

order PID (FOPID) controller is prominently used. The controllers mentioned in (Oustaloup and 

Melchior 1993) are also used [16] [17] [18].  

The corresponding generalized FOPID controller is given in (Eq4),  

 𝐶(𝑠) =  𝐾𝑝 +  
𝐾𝑖

𝑠𝜆
+  𝐾𝐷𝑠µ , (4) 

Where, λ, µ are the fractional-order operators. FOPI and FOPD controllers are possible by usage of 

the fractional integral or derivative terms separately. 

For closed-loop control systems, there are four situations: (1) integer order (IO) plant with IO 

controller; (2) IO plant with fractional-order (FO) controller; (3) FO plant with IO controller, and (4) 

FO plant with FO controller.  

The structure of FOPID controllers with Time Delay is shown in Figure 1.  

 
Figure 1 Structure of FOPID controllers with Time Delay System [9] 

 

The conventional tuning algorithms used in the design of fractional-order controller are based on a 

frequency domain approach,  Ziegler-Nichols rule [24], the tuning of FOPIDs using an extension of 

the popular Ms Constrained Integral Optimization (MIGO) method, named as the F-MIGO 

(Fractional-MIGO) optimization [34], other tuning methods based on certain performance index [24] 

based on minimizing some time domain cost functions, such as Integral of Square Error (ISE), 

Integral of Time Absolute Error (ITAE), Integral of Absolute Error (IAE), etc. are presented [12] 

[13] [14] [15]. The vast literature shows that different controller exhibit distinctive characteristics 

and therefore handling dynamics of plants and meeting desired specifications is a tedious task. 

Therefore controllers with robust structure must be identified with promising applications. Section 

IV highlights one such method for robust design. 

 

IV. Bode's Ideal Loop Transfer Function based Robust controller 

Towards the middle of 20th century, Bode proposed the first idea involving the use of FOC in a 

feedback problem known as Bode's ideal transfer function. A key problem in the design of a 

feedback amplifier was to devise a feedback loop so that the performance of the closed-loop is 

invariant to changes in the amplifier gain [1][3][22][34]. Bode proposed that the ideal shape of 

the Nyquist plot for the open loop frequency response is a straight line in the complex plane, which 

provides theoretically infinite gain margin. Bode emerged with the first sign of the potential of FOC, 

though without using the term fractional-order. Bode presented an elegant solution to this robust 

design problem. 
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A fractional-order integrator is given in (Eq5) 

 𝐿(𝑠) =  
𝜔𝑔𝑐

𝑠

𝛼

 , (5) 

is known as Bode's ideal transfer function, where 𝜔𝑔𝑐  is the gain crossover frequency and the 

constant phase margin is 𝛷𝑚 =  𝜋 −
𝛼𝜋

2
 .  The Bode diagram of L(s) (1 < α < 2) is shown in Figure 2. 

This frequency characteristic is interesting in terms of robust feature of the system to parameter 

changes or uncertainties, and many researchers have used this design method. The major benefit 

achieved through this structure is iso-damping, i.e. overshoot being independent of the system gain. 

The use of fractional elements for description of ideal Bode's control loop is a promising application 

of FC in the process control field [1][2].  

Bode's ideal control loop frequency response has the fractional integrator shape and provides the iso-

damping property around the gain crossover frequency. This is due to the fact that the phase margin 

and the maximum overshoot are defined by one parameter only (the fractional power of α), and are 

independent of open-loop gain. Bode's ideal loop transfer function is probably the first design 

method that addressed robustness explicitly. The design of FO controllers using Bode's ideal transfer 

function [4] [5] is one of the applications. The best FOC can outperform the most accurate IO 

controllers are documented in literature [22].  

In this paper, an approach for design of fractional-order controllers using Bode's ideal loop transfer 

function for IO, FO plants and time delay plants is presented. The advantage of this control design 

methodology is that the closed loop systems step responses exhibit an iso-damping property. Iso-

damping is a desirable system property referring to a state, where the open-loop phase Bode plot is 

flat, i.e. the phase derivative with respect to frequency is zero, at a frequency called the tangent 

frequency. At the tangent frequency the Nyquist curve of the open-loop system tangentially touches 

the sensitivity circle and the phase Bode is locally flat which implies that the system will be more 

robust to gain variations. For systems that exhibit iso-damping property, the overshoots of the 

closed-loop step responses will remain almost constant for different values of the controller gain. 

This will ensure that the closed-loop system is robust to gain variations and to keep phase margin 

constant, the phase derivative with respect to frequency should be zero around the gain cross-over 

frequency.  

 
Figure 2 Bode diagrams of amplitude and phase of L(s) for 1 < γ < 2 [Barbosa] 

 

A new Bode's ideal transfer function is designed to tolerate the time-delay in loop is proposed in [9]. 

A time delay Bode's model for FOPID design is selected. The choice of 𝐺(𝑠) as open-loop transfer 

function also gives an ideal closed-loop model under a unit feedback with infinite gain margin and 

constant phase margin 

 𝐺(𝑠) =  
𝜔𝑐

𝛼

𝑠𝛼 +  𝜔𝑐
𝛼 , (6) 
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It is well known that, the bandwidth design for time-delay system is a critical problem in control 

system design. However, this problem is rarely discussed in the current Bode shaping methods 

[34][35]. This problem is solved by investigating the gain and phase margins for the proposed time-

delay Bode's model. Bode shaping for FOPID design is solved by one dimensional searching, rather 

than five parameter optimizations. To simplify the design of FOPID from solving nonlinear 

equations, data fitting at steady state and the cross over frequency are derived, such that five 

unknown parameters are reduced to one [9]. Then, the problem is easily solved by one dimensional 

searching. The basic idea is shown in block diagram of the FOPID control system in Figure 2.  

The following time delay system is used, 

 𝑃1(𝑠) =  𝑃2(𝑠)𝑒−𝑇𝑠 , (7) 

Where, T is time delay, 𝑃1(𝑠) is the controlled plant and 𝑃2(𝑠) is delay free model. The closed loop 

system with a FOPID controller is given in (Eq8)  

 
𝑃1(𝑠)𝐶(𝑠)

1 + 𝑃1(𝑠)𝐶(𝑠)
=  

𝑃2(𝑠)𝐶(𝑠)

1 + 𝑃2(𝑠)𝑒−𝑇𝑠𝐶(𝑠)
𝑒−𝑇𝑠 . (8) 

It is observed that time delay exists in closed loop system. The BITF and time delay can be 

combined and a desired model of closed loop for time delay system can be taken as 

 𝐻(𝑠) =  
𝜔𝑐

𝛼

𝑠𝛼 + 𝜔𝑐
𝛼 𝑒−𝑇𝑠 , (9) 

Where, time delay in 𝐻(𝑠) equals to real one. 

 

V. Design and Simulation Examples 

Example1. A generalized unstable integer-order open-loop transfer function is,  

 𝑃(𝑠) =
(𝑠 + 1)(𝑠 + 2)

(𝑠 + 0.1)(𝑠 − 1)
 (10) 

Design specifications: 

 Phase margin (PM)= 100˚ 

 Gain crossover frequency  = 1000 rad/s 

Solution: 

1. The transfer function being proper in nature and can be used directly for design of FO 

controller. 

2. FO controller is designed to obtain the loop transfer function as Bode's Ideal Integrator Eq5. 

3. Here we want PM of 100˚ at 1000rad/sec. Thus using equation Bode’s equation, we get kc = 

464.1945 and α= 0.8889. 

4. Thus fractional-order controller obtained is, 

 𝐶(𝑠) =  
464.1945(𝑠 + 1)(𝑠 + 2) 

𝑠0.8889 (𝑠 + 0.1)(𝑠 − 1)
 (11) 

5. The implementation of FO controller is done by Oustaloup’s Recursive Approximation 

(ORA) which approximates an FO operator as a chain of first-order filters within a specified 

frequency band (ωl , ωh) as (100,1000000). Here the Modified Oustaloup’s Recursive 

Approximation is used. 

The Bode plot in Figure 3 of the forward path transfer function C(s)P(s) shows that the designed FO 

controller has achieved the desired closed-loop phase margin of 100˚. The plot also contains the 

frequency response of C(s)P(s)  =  
kc

sα
  . It is seen that these overlap each other in the given 

frequency range. The figure 4 shows step response of the plant P(s) with controller. The designed FO 

controller is compared with Proportional Integral Derivative (PID) controller using PID toolbox of 
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MATLAB. The Integral controller with Kp= 0.25629, Ki=0.04032, Kd=0.40725 is obtained which 

shows that we can tune a PID controller. 

 
Figure 3 Bode plots with designed FO controller for 𝑃(𝑠) for Example1 

 
Figure 4 Step response with designed fractional-order controller for Example1 

From the table 1 it can be clearly seen that the designed FO controller gives an excellent 

performance with a less rise time and faster settling time as compared to PID controller. The 

overshoot has also reduced with the designed fractional-order controller as compared to PID 

controller. 

Table 1 Time domain parameter specification for Example1 

Parameters Without controller With PID 

controller 

With BITF 

Fractional-order 

Controller 

Rise time - 1.05 seconds 0.003 seconds 
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Settling time - 82.5 seconds 0.0128 seconds 

Overshoot 6.24x1026 77.6 0.986 

 

Example2. A generalized fractional-order open-loop transfer function is, 

 𝑃(𝑠) =
1

(𝑠0.2 + 1)
 (12) 

Design specifications: 

 Phase margin (PM)= 100˚ 

 Gain crossover frequency  = 1000 rad/s 

Solution: 

1. The transfer function being proper in nature, so it can be used directly for design of FO 

controller. 

2. FO controller is designed to obtain the loop transfer function as Bode's Ideal Integrator from 

(Eq5). 

3. Here we want PM of 100˚ at 1000rad/sec. Thus using equation (5) we get kc = 464.2 and α= 

0.89. 

4. Thus fractional-order controller obtained is, 

 𝐶(𝑠) =  
464.2 

𝑠0.89 𝑃(𝑠)
 (13) 

5. The implementation of FO controller is done by Oustaloup’s Recursive 

Approximation(ORA) which approximates an FO operator as a chain of first-order filters 

within a specified frequency band (ωl , ωh) as (100,1000000). Here the Modified Oustaloup’s 

Recursive Approximation is used. 

The Bode plot in Figure 5 of the forward path transfer function C(s)P(s) shows that the designed FO 

controller has achieved the desired closed-loop phase margin of 100˚. The plot also contains the 

frequency response of C(s)P(s)  =  
kc

sα   . It is seen that these overlap each other in the given 

frequency range. Figure 6 shows step response of the plant P(s) with controller. The table shows the 

parameters specification with and without controller and it is clear that the designed FO controller 

stabilizes the plant faster at 0.223 seconds. 
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Figure 5 Bode plots with designed fractional-order controller for Example2 

 

 
Figure 6 Step responses with designed fractional-order controller for Example2 

 

Table 2 Time domain parameter specification for Example2 

 

Parameters Without controller With BITF 

Fractional-order 

Controller 

Rise time 693 seconds 0.0693 seconds 

Settling time - 0.223 seconds 

Overshoot 2.22x10-14 2.83 

Steady state value 0.994 1 

 

Example3. A FOPTD system of literature [10] is considered, 

 𝐺(𝑠) =  
1

𝑠 + 1 
𝑒−0.1𝑠 (14) 
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This is a lag-dominant FOPDT with K=1, L=0.1 and T=1. The time constant is much larger than the 

delay. The plant dynamics are shown in Table 3 

 

Table 3 FOPTD plant 𝐺(𝑠) frequency and time domain parameters 

 

Controllers Gain 

Margin 

Phase 

Margin(deg) 

Gain cross over 

frequency(rad/s) 

Overshoot 

(%) 

Rise 

time(s) 

Settling 

time(s) 

FOPTD 

plant 𝑮(𝒔) 

16.3187 -180 0 0 2.1971 4.0121 

 

The design procedure [9] is summarized as below: 

1. The parameters 𝜔𝑔𝑐 and 𝛼 are found as 4.85 and 1.01 by taking into account the stability 

constraints. 

2. The gain margin (GM) is estimated at 3.2. 

3. The phase margin is determined as 61˚. 

4. A simple and effective FOPID controller designed in frequency domain is determined 

with the differential order µ as 0.68 and the final FOPID controller is obtained [9] as 

 𝐶𝐹𝑂𝑃𝐼𝐷(𝑠) =  3.1534 +  
4.9272

𝑠1.01
+  0.1487𝑠0.68 (15) 

A fractional-order FOPI controller is designed by Luo [33] as 

 
𝐶𝐹𝑂𝑃𝐼(𝑠) =  3.3367 +  

4.6464

𝑠1.21
 

 
(16) 

An integer-order PI controller is optimized by Astrom and Hagglund [17] for same 𝐺(𝑠) FOPTD 

system as 

 
𝐶𝐹𝑂𝑃𝐼(𝑠) =  2.8236 +  

4.6464

𝑠
 

 
(17) 

 
 

Figure 7 Step responses with 𝐶𝐹𝑂𝑃𝐼𝐷(𝑠), 𝐶𝐹𝑂𝑃𝐼(𝑠), 𝐶𝐼𝑂𝑃𝐼(𝑠) controllers 
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Figure 8 Step responses with +10% gain variations for 𝐶𝐹𝑂𝑃𝐼𝐷(𝑠), 𝐶𝐹𝑂𝑃𝐼(𝑠), 𝐶𝐼𝑂𝑃𝐼(𝑠) controllers 

.  

Figure 9 Bode plots with 𝐶𝐹𝑂𝑃𝐼𝐷(𝑠), 𝐶𝐹𝑂𝑃𝐼(𝑠), 𝐶𝐼𝑂𝑃𝐼(𝑠) controllers 

 

VI Result Analysis 

To illustrate the set-point tracking and disturbance rejection performance, step response and load 

disturbance response are presented in Figure 7. It is clearly seen that the FOPID in (Eq15) provides 

better control performance than the controllers in equation (Eq16) and (Eq17), which is also 

demonstrated by their frequency response of open-loop transfer functions in Figure 9. The 

comparison indexes [9] gain margin, phase margin, gain cross over frequency, overshoot, rise time 

and settling time for the set point response shows the effectiveness of the method. 

To compare the robustness of three controllers, the step responses with +10% gain variations is also 

shown in Figure 8. The performance shows the system robustness to the gain uncertainties using the 

FOPID controller. Compared with the step responses using the FOPI and IOPI controllers, the 

overshoots of the FOPID are smaller and with shorter settling time. 

 

VII Conclusions 
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This paper present successful design and implementation of robust BITF based fractional-order and 

modified BITF based fractional-order controller for generalized unstable integer-order time-delay 

system, generalised fractional-order time delay system and FOPDT system. The closed loop 

performance parameters like gain margin, phase margin, gain cross over frequency, overshoot, rise 

time and settling time for the set point response shows the effectiveness of the proposed method. The 

performance of proposed controllers is also tested with parametric uncertainty. Simulation results 

shows improvement in robust behaviour of designed controller for time delay systems. Research 

survey indicates design of soft computing and nature inspired based robust controller for such time-

delay system. 
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