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Abstract.  
The Tsall is distribution can be used to analyse the transverse momentum 
distributions measured by the STAR and PHENIX collaborations at the Relativist ic 
Heavy Ion Coll ider and by the ALICE [3], ATLAS [4], and CM S [5] collaborations 
at the Large Hadron Coll ider in the context of relat ivist ic thermodynamics. 
Thermodynamic consistency in the context of relat ivist ic high energy quantum 
distributions is theoretically elucidated. The transverse momentum distribution is  
described in an improved form, and f its are shown together with estimates for the 
parameter q and the temperature T.  

 

1 Introduction 

Over the past few years, a vast amount of fresh data has 
been generated by the Large Hadron Collider (LHC) and 
the Relativistic Heavy Ion Collider (RHIC). Due to this, a 
new energy zone is now accessible for relativistic 
thermodynamics and hy- 

ture and the chemical potential, V is the volume, g is the 
degeneracy factor. In the limit where the parameter q goes 
to 1 this reduces the standard Boltzmann distributio
 = 

q→1 dpT  dy 

drodynamics can be tested and applied. The highest avail- 

able energy for heavy ions is 
√

s = 2760 AGeV yet the ob- 

served temperature is only of the order of T      0.16 GeV 
at RHIC as well as at the LHC. This enormous change 
from the energy available in the initial state to the tem- 
perature observed in the final state is clearly a challenge 

The parameterization given in Eq. (1) is close to the one 
used by the STAR, PHENIX, ALICE, ATLAS and CMS 
collaborations [1, 2, 3, 4, 5]: 

for dynamical models. d2N 
 

 

dN (n − 1)(n − 2) 
 

 

In the analysis of the new data, one statistical distri- 
bution has gained prominence with very good fits to the 
transverse momentum distributions made by the STAR [1] 
and PHENIX [2] collaborations at RHIC and by the AL- 

dp  dy 
=  pT  

dy nC(nC + m (n 2)) 
−n 

1 +
   T 0 

nC 

 
 

(3) 

ICE [3], ATLAS [4] and CMS [5] collaborations at the 
LHC. 

In the literature there exists more than one version 
of the Tsallis distribution [6, 7, 8, 9, 10] and we investigate 
here one that we consider well suited for describing results 
in high energy physics. Our main guiding criterium will be 
thermodynamic consistency which has not always been 

where n, C and m0 are fit parameters. The analytic ex- 
pression used in Refs. [1, 2, 3, 4, 5] corresponds to identify- 
ing 

q 
n → 

q − 1 
(4) 

and 
T + m0(q − 1) 

implemented correctly (see e.g. [11, 12, 13]). The explicit 
form which we will use is [14]: 

nC → . (5) 
q − 1 

d2N 
 

 

After this substitution Eq. (3) becomes 
2 

= dp   dy d N dN = p 
 

(n − 1)(n − 2) 
T dpT dy 

T   
dy  nC(nC + m0(n − 2)) 

p m   cosh y m   cosh y − µ −q/(q−1) 

gV
  T T  

(2π)2 

1 + (q 1)    T  
T 

(,1) T 
 

 

h 
T + m0(q − 1)

i
 

−q/(q−1) 

where pT and mT are the transverse momentum and mass 
respectively, y is the rapidity, T  and µ are the tempera- 

mT  
1 + (q − 1) 

T
 

−q/(q−1) 
. (6) 

 

− 
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Which, at mid-rapidity y = 0 and zero chemical potential, 
has the same dependence on the transverse momentum 
as (1) apart from an additional factor mT . The  inclusions 
of the factor mT leads to a more consistent interpretation 
of the variables q and T . In particular, no clear pattern 
emerges for the values of n and C while an interesting 
regularity is obtained for q and T as seen in Figs. 8 and 9 
shown towards the end of this paper. 
The Tsallis distribution introduces a new parameter q 
which in practice is always close to 1, typical values for 
the parameter q obtained from fits to the transverse mo- 
mentum distribution are in the range 1.1 to 1.2, in the 
remainder of this paper we will always assume q > 1. 

In section 2 we review the derivation of the Tsallis dis- 
tribution by emphasizing the quantum statistical form. In 
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section 3 we prove thermodynamic consistency. In section 
4 we show in detail fits to the transverse momentum dis- 

tribution in p p collisions at 
√

s = 900 GeV. Section 5 
presents conclusions. 

 
 

2 Tsallis Distribution. 

 Comparison with Standard Statistical 
Distributions 

 
The Tsallis form of the Fermi-Dirac distribution proposed 
in [13, 15, 16, 17, 18] uses 

Fig. 1. Comparison  between the Fermi-Dirac (dashed line) 
and the Tsallis-FD (solid line) distributions as function of the 
energy E, keeping the Tsallis parameter q fixed at 1.1, for 
various values of the temperature T . The chemical potential is 
kept equal to one in all curves, the units are arbitrary. 

 

10 

 

 
 

8 

 

 
 

6 

 

f F D(E) ≡  
expq 

1 

E−µ 
T 

. (7) 
4

 

+ 1 
 

where the function expq (x) is defined as 2 

( 

expq (x) ≡ [1 + (q 1)x]1/(q−1) if x > 0 
1/(1−q) (8) 0

0 0.5 1 1.5 2 2.5 3 

[1 + (1 − q)x] if x ≤ 0 E 

Fig. 2. Comparison between the Bose-Einstein (dashed line) 
and, in the limit where q 1 reduces to the standard 
exponential: 

lim exp (x) exp(x). 
q→1 

The form given in Eq. (7) will be referred to as the Tsallis- 
FD distribution. A comparison between the standard Fermi- 
Dirac and Tsallis-FD distributions as a function of the 
energy E is shown in Fig. 1 for various values of the 

and Tsallis-BE (solid line) distributions as a function of the 
energy E, keeping the Tsallis parameter q fixed at 1.1, for 
various values of the temperature T . The chemical potential is 
kept equal to one in all curves, the units are arbitrary. 

 

 
distribution in the limit where q → 1) and is given by [6, 

temperature T . The Tsallis parameter q is kept fixed at 7] 
q = 1.1. The Bose-Einstein version will be referred to as f B(E) ≡ exp 

  

—
 E − µ 

 
. (10) 

the Tsallis-BE distribution [19] 

 
f BE(E) ≡        . (9) 

T q T 

or, using standard notation, 

 

 
      

T 

expq 
E−µ 

T −  

f B(E) = 1 + (q − 1) 
E − µ 

T 

— 1 
q−1  

. (11) 

A  comparison between  the  standard Bose-Einstein and 
Tsallis-BE distributions as a function of the energy E is 
shown in Fig. 2 for various values of the temperature T . 
The Tsallis parameter q is again kept fixed at q = 1.1. The 
classical limit will be referred to as Tsallis-B distribution 
(the B stands for the fact that it reduces to the Boltzmann 

 

Again, a comparison between the standard Boltzmann and 
Tsallis-B distributions as a function of the energy E is 
shown in Fig. 3. for various values of the temperature T . 
As before the Tsallis parameter q is kept fixed at q = 1.1. 
All forms of the Tsallis distribution introduce a new pa- 

F
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f T

 (
E

) 

1 



  Dogo Rangsang Research Journal                                                  UGC Care Group I Journal 

ISSN : 2347-7180                                                               Vol-08 Issue-14 No. 02, March : 2021  

Page | 770                                                                                              Copyright @ 2021 Author 

q = 1.1 

T = 0.2 
T = 0.4 

T = 0.1 

T i 

T i 

→ 

T i 

→ 

i 

i 

 

10 For simplicity Eq. (15) refers to one particle species but 
can be easily generalized to many. In the limit where mo- 
menta are quantized this is given by: 

Σ 

SF D = −g [fi ln fi + (1 − fi) ln(1 − fi)] , (16) 
i 

5 For convenience we will work with the  discrete form in 
the rest of this section. The large volume limit can be 
recovered with the standard replacement: 

Σ ∫ 
d3p 

→ V 
(2π)3 

(17) 
i 

0
0 0.5 1 1.5 2 

E 

Fig. 3. Comparison between the Boltzmann (dashed line) and 

The generalization, using the Tsallis prescription, leads to 
[15, 16, 17] 

Σ 
Tsallis-B (solid line) distributions  as  a  function  of  the  energy 
E, keeping the Tsallis parameter q fixed at 1.1,  for  various 
values of  the temperature  T . The  chemical potential  is kept 

SF D = −g [f q lnq fi + (1 − fi)q lnq(1 − fi)] , (18) 
i 

equal to one in all curves, the units are arbitrary. where use has been made of the function 

x1−q − 1 
 

 

rameter q. In practice this parameter is always close to 

lnq(x) ≡ , (19) 
1 − q 

1, e.g. in the results obtained by the ALICE and CMS 
collaborations typical values for the parameter q can be 

often referred to as q-logarithm. The classical limit of this 
form is given by [21]: 

obtained from fits to the transverse momentum distribu- 
tion for identified charged particles [3] and are in the 
range 1.1 to 1.2 (see below). The value of q should thus be 

SB = 
Σ 

−g [fq lnq 
i 

fi − fi)] , (20) 

considered as never being far from 1, deviating from it by 
20% at most. An analysis of the composition of final state 
particles leads to a similar result [20] for the parameter q. 

In the limit where q 1 all distributions coincide with 
the standard statistical distributions: 

The equilibrium distributions can also be  derived  from 
the Rényi distribution as shown in detail in [22]. It can be 
easily shown that in the limit where the Tsallis parameter 
q tends to 1 one has: 

lim f B(E) = f 
q→1 

T 

B(E), (12) 
lim lnq(x) = ln(x). (21) 
q→1 

lim f F D(E) = f F D(E), (13) 
q→1 

T 

In a similar vein, the generalized form of the entropy for 
bosons is given by 

lim f BE(E) = f BE(E). (14) Σ 
q→1 

T
 SBE  = −g [f q lnq fi − (1 + fi)q lnq(1 + fi)] , (22) 

A derivation of the Tsallis distribution, based on the Boltz- 
mann equation, has been given in Ref. [23, 24]. 

The Tsallis-B distribution is always larger than the 
Boltzmann one if q > 1. Taking into account the large pT 
results for particle production we will only consider this 
case here. As a consequence, in order to keep the particle 
yields the same, the Tsallis distribution always leads to 
smaller values of the freeze-out temperature for the same 
set of particle yields [20]. 

 

 Derivation for Quantum Statistics 

i 
 

In the limit q    1 Eqs. (18) and (22) reduce to the stan- 
dard Fermi-Dirac and Bose-Einstein distributions.  Fur- 
ther, as we shall presently explain, the formulation of a 
variational principle in terms of the above equations al- 
lows to prove the validity of the general relations of ther- 
modynamics. One of the relevant constraints is given by 
the average number of particles, 

Σ 
fq = N. (23) 

i 

Likewise, the energy of the system gives a constraint, 

The standard form of the entropy for fermions in statisti- 
cal mechanics is given in the large volume limit by: 

∫ 

Σ 
fqEi = E. (24) 

i 

SFD 
= −gV 

d3p 
 

 

(2π)3 

f FD ln f F D It is necessary to have the power q on the left-hand side as 
no thermodynamic consistency would be achieved with- 

+ (1 − f F D) ln(1 − f F D) , (15) out it. The maximization of the entropy measure under 

B
 

f T 
(E

) 
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the constraints Eqs. (23) and (24) leads to the variational 
equation: 

 Thermodynamic Consistency 

" 
  δ   SF D + α(N − 

Σ 
fq) + β(E − 

# 
Σ 

fqE ) 
 
= 0, 

The first and second laws of thermodynamics lead to the 
following two differential relations [25] 

δfi T i i   i 
i i  

(25) 

 

dǫ = Tds + µdn, (34) 

where α and β are Lagrange multipliers associated, respec- 
tively, with the total number of particles and the total en- 
ergy. Differentiating each expression in Eq. (25) separately 
gives the following results 

dP = sdT + ndµ. (35) 
 

where ǫ = E/V , s = S/V and n = N/V are the energy, en- 
tropy and particle densities respectively. Thermodynamic 

  δ     
SFD

  
= 

   q  
"  

1 − fi 
 q−1 

# 
— 1  fq−1, (26) 

consistency requires that the following relations be satis- 
fied 

 
 
 
 

and 

δfi T 
 
 

δ 

δfi 

  

q − 1 
  

Σ 
N − 

i 

fi 
i
 

! 

q 
= −qf q−1, (27) 

! 

. 
∂ǫ . 

T =  
∂s .

 
. 

∂ǫ . 
µ =  

∂n .
 
. 

 

, (36) 

 
, (37) 

δ 

δfi 

Σ 

E − fqEi 
i 

= −qE fq−1. (28) 

∂P . 
n = 

∂µ .
 
. 

∂P . 

, (38) 

By substituting Eqs. (26), (27) and (28) into Eq. (25), we 
obtain 

s = . 
∂T µ 

. (39) 

qfq−1 

( 
   1  

q − 1 

" 

−1 + 
1 − fi 

fi 

 q−1
#

 
— βEi 

) 

— α = 0. 

(29) 

The pressure, energy density and entropy density are all 
given by corresponding integrals over Tsallis distributions 
and the derivatives have to reproduce the corresponding 
physical quantities, e.g. for Tsallis-B one has 

Which can be rewritten as 
" 

1 −1 + 
 

 

1 − fi 
 q−1

#
  
= βE 

 
+ α, (30) 

∫ 
nB = g d3p 1 + (q − 1) E − µ 

 

 − q  
q−1 

 
, (40) 

q − 1 fi 
T (2π)3 

∫ 3 
T    

 − q 

and, by rearranging Eq. (30), we get ǫB  = g 
d p 

(2π)3 
E

 1 + (q − 1) 
E − µ 

T 

q−1 

, (41) 

1 − fi 
fi 

    1  

= [1 + (q − 1)(βEi + α)] q−1 , 
∫ 

PB = g d3p 
  

p2 
1 + (q − 1) E − µ 

 

 − q  
q−1 

 
. (42) 

which gives the Tsallis-FD form referred to earlier in this 
paper as [15, 16, 17] 

1 
fi = 1 , 

 

T (2π)3 3E T 

For consistency, these expressions have to agree with the 
basic thermodynamic relations (36), (37),(38), and (39). 
i.e. , for the above relations, it has to be shown that 

[1 + (q − 1)(βEi + α)] q−1 + 1 
1 B ∂PB  

=       . (31) nT  =
 T   (43) 

expq (α + βEi)  + 1 ∂µ 

Using a similar approach one can also determine the Tsallis- 
BE distribution by starting from the extremum of the en- 
tropy subject to the same two conditions: 

We prove that this is indeed the case. We will show that 
the consistency conditions given above are indeed obeyed. 

" 
  δ   SBE + α(N − 

Σ 
fq) + β(E − 

# 
Σ 

fqE ) 
 
= 0, 

P = 
−E + TS + µN 

, (44)
 

V 
δfi T i i   i 

i i  
(32) 

and take the partial derivative with respect to µ  in order 
to check for thermodynamic consistency, it leads to 

which leads to 
1 

fi = 1 , 
[1 + (q − 1)(βEi + α)] q−1 − 1 

. 
∂P . 

 
 

∂µ . 

1 ∂E ∂S ∂N 
= + T + N + µ , 

V ∂µ ∂µ ∂µ " 
  1  1 Σ T     

 
 E  − µ 

   
∂fq  

 =      
expq ((Ei − µ)/T ) 

. (33) 
— 1 

= N + 
V 

i   

− 
q − 1 

1 + (q − 1) 
T ∂µ

 

where the usual identifications α = −µ/T and β = 1/T Tq(1 − f )q−1 ∂f  
 
 , (45) 

have been made. q − 1 ∂µ 

i 

f 
n 

s 

T 

T 

i 

i 
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1+ 

. 

q   1 

. 

q   1 q−1 

= − . (48) 

q   1 q−1 

. 

∂n 

 

then, by explicit calculation By introducing the above relations into Eq. (47), the nu- 
merator of Eq. (47) becomes 

∂fq  qfq+1   Ei − µ 
 

 

 − 1 
1−q 

      i  =   i  1 + (q − 1) , ∂E ∂E dµ Σ 
 

  

q−1 ∂fi 
 

 

∂µ T T + = 
∂T ∂µ dT qEifi ∂T

 
i 

2 −1+ 1  
Σ ∂f  ∂f ∂fi f Ei − µ 

 
 

1−q q2E (f f )q−1    j i 

=  i   

∂µ T 
1 + (q − 1) 

T 
, i,j 

j i j 
∂µ  ∂T 

and 
— Σ 

q−1 ∂fj 

 
 

q−1 

 
 

q−1 (q − 1)(Ei − µ) 
qfj ∂µ

 
j Σ 

(1 − fi) = fi 1 + 
T 

. qE (f f )q−1 C 
i i j ij 

i,j 

Introducing this into Eq. (45), yields Σ 
q−1 ∂fj . (49) 

. 

 ∂P . 

∂µ .T 

 
= n, (46) 

fj ∂µ 
j 

 

Where the abbreviation 
  

which proves the thermodynamic consistency (38). 
We also calculate explicitly the relation in Eq. (36) can 

be rewritten as 

− 

Cij ≡ (fifj) 
∂fi ∂fj ∂fj ∂fi 

∂T ∂µ 
− 

∂T ∂µ 
, (50) 

. ∂E dT + ∂E dµ has been introduced. One can rewrite the denominator 

 ∂E . 
= 

∂T ∂µ 
,
 part of Eq. (47) as 

∂S .n 
 

 ∂S dT + ∂S dµ Σ h i 
∂T ∂µ − q −f + (1 − f  ) fq−1C 
∂E + ∂E dµ 

=  ∂T ∂µ dT , (47) ∂S + ∂S dµ 

∂S ∂S dµ 
+ = ∂T ∂µ dT 

 
i,j 

i i j 

Σ 
q−1 ∂fj 

i,j 

, 
∂T ∂µ dT (q−1) fj ∂µ

 
j 

since n is kept fixed one has the additional constraint Σ 
q (Ei − µ) (fifj) 

q−1 Ci,j 
∂n ∂n dn = dT + dµ = 0, 

  = 
i,j 

Σ
 , (51) 

∂T ∂µ q−1 ∂fj 
 

 

leading to  
dµ ∂T  

dT ∂n ∂µ 

 
 

where 

 
 
 

 
q−1 

T 
fj ∂µ 

j 
 
 
 

q−1 

−fi + (1 − fi) 
=  

(Ei − µ) 
f q−1,

 
Now, we rewrite (47) and (48) in terms of the following 
expressions 

q − 1 T 

∂E Σ 
 

 

q−1 ∂fi 
 

 

hence, by substituting Eqs. (49) and (51) in to Eq. (47), 
= 

∂T 
i 

∂E Σ 

qEifi ∂T 
, 

∂f 

we find  
. 

∂E . 

Σ 
 i,j 

EiCij 

= qE fq−1    i 
,  

 

  .  = T Σ , (52) 

∂µ i i ∂µ 
i 

" # 
∂S .n  

i,j 

(Ei − µ)Cij 

∂S Σ 
= q 

∂T 
i 

− 
 −fi + (1 − fi) 

q − 1 

 ∂fi 
,
 

∂T 
since 

Σ 
 
i,j 

Cij = 0, this finally leads to the desired result 

" 
q−1 # . q−1 

∂S Σ 
= q 

∂µ 
i 

−fi + (1 − fi) 

q − 1 

∂fi 
,
 

∂µ 
 ∂E . 

∂S . 
= T. (53) 

∂n 1 
= 

 

" # 
Σ 

qfq−1 ∂fi   
,  

Hence thermodynamic consistency is satisfied. 
It has thus been shown that the definitions of temper- 

 

and 

∂T V 
 

∂n 1 
= 

∂µ V 

i 
i 

" 
Σ 

qfq−1 

i 

∂T 
 

# 
∂fi  

.
 

∂µ 

ature and pressure within the Tsallis formalism for non- 
extensive statistics lead to expressions which satisfy con- 
sistency with the first and second laws of thermodynamics. 
The remaining relations can be be shown to  be  satisfied 
in a similar manner. 

n 

i 

, 

= 

i 
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3 Transverse Momentum Distributions: Fit 
Details 

The total number of particles is given by the integral ver- 
sion of Eq. ((23)), 

101 

 
 

100 

 

10
-1 

 

N = gV 

∫ 
d3p 

 

 

(2π)3 
1 + (q − 1) 

E − µ 
  −q/(q−1) 

T 

 

. (54) 
 
 

10
-2 

The corresponding (invariant) momentum distribution de- 
duced from the equation above is given by 

 

10
-3 

d3N 
E 

d3p 

 
    1  

= gV E 
(2π)3

 
1 + (q 1) 

E − µ
 

T 

 −q/(q−1)  
.   (55) 
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p
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2 2.5 3 

In terms of the rapidity and transverse mass variables this 
becomes 

 
2 

Fig. 4. Comparison between the measured transverse momen- 

tum distribution for π−, K− and p̄  as measured by the ALICE 
collaboration [3] and the Tsallis-B distribution. The lines are 
fits using the parameterization given in Eq. (57) to the 0.9 TeV 

d N 

dy pT dpT = gV 
mT cosh y 

(2π)2 

  
 
m cosh y − µ

 −q/(q−1) 
 

 

data with the parameters listed in Table 1. Solid line is for π−, 
the dotted line is for K−, the dashed line is for anti-protons. 

× 1 + (q − 1) 
T

 (.56) 
 

100 
At mid-rapidity y = 0 and for zero chemical potential this 
reduces to the following expression 

 
10

-1 

. 
d2N   . pT mT h mT  

i−q/(q−1) 

dpT 
. 

dy . 
 

y=0 

= gV 
(2π)2 

1 + (q − 1)  
T

 . 

(57) 

10
-2 

-3 

In Fig. 4 we show a fit to the transverse momentum distri- 
butions obtained in p p collisions at 900 GeV for identi- 

fied particles π−, K−, p̄  published by the ALICE collabo- 
ration [3]. We have also checked that the χ2 values are of a 
similar quality. We have also made fits using the Tsallis-B 
distribution to experimental measurements published by 
the CMS collaboration [5]. These are shown in Figs. 5, 6 
and 7 and are comparable with those shown by the CMS 

10 
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2 4 6 8 10 

p
T 

(GeV/c) 

collaboration [5].  The resulting parameters are collected 
in Table 1. The most striking feature is that the values of 
the parameter q  are fairly stable in the range 1.1 to  1.2 
for all particles considered at 0.9 TeV. The temperature T 
cannot be determined very accurately for all hadrons but 
they are consistent with a value around 70 MeV. 
For clarity we show these results also in Fig. 8 for the val- 

ues of the parameter q and in Fig. 9 for the values of the 
Tsallis parameter T . The striking feature is that the values 
of q are consistently between 1.1 and 1.2 for all species of 
hadrons at 0.9. The values obtained for the temperature 
are clearly below values for the thermal freeze-out temper- 
ature that have been reported elsewhere in the literature. 
This is unavoidable when using  the  Tsallis  distribution: 
for the same value of T , the Tsallis distribution is always 
higher than the Boltzmann distribution, hence, to repro- 
duce the same transverse momentum, one has to use a 
lower temperature for the Tsallis distribution than for the 
Boltzmann one. 

the ALICE [27], ATLAS [4] and CMS [26] collabora- 
tions have published data on the transverse momentum 

Fig. 5. Comparison between the measured transverse momen- 
tum distribution for K0 as measured by the CMS collabora- 
tion [5] and the Tsallis-B distribution. The solid line is a fit 
using the parameterization given in Eq. (57) to the 0.9 TeV 
data with the parameters listed in Table 1. 

 
 

 
distribution of charged particles. These extend to much 
higher values of the transverse momentum [4] and would 
provide an important test for distinguishing formula (1) 
from (3). Since this does not involve identified particles, 
it makes use of a summation over several hadrons, e.g. pi- 
ons, kaons and protons, hence the analysis is a bit more 
involved and will be considered in a separate publication. 
For completeness we also show the value of the volume 
V  appearing in Eq. (1). The resulting radius R  is shown 
in Fig. 10. If all hadrons originate from the same sys- 
tem and if there were no extra contributions coming from 
heavier resonances decaying into hadrons, then this vol- 
ume should be the same for all hadrons. This is clearly 
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Fig. 6. Comparison between the measured transverse momen- 
tum distribution for Λ as measured by the CMS  collabora- 
tion [5] and the Tsallis-B distribution. The solid line is a fit 
using the parameterization given in Eq. (57) to the 0.9 TeV 
data with the parameters listed in Table 1. 
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not the case in the present analysis, in fact the radius is 
surprisingly larger which can only be interpreted by a very 
large time between chemical and thermal freeze-out. This 
clearly needs further investigation. 

 
 

4 Discussion and Conclusions 

In this paper we have presented a detailed derivation of 
the quantum form of the Tsallis distribution and proven 
the thermodynamic consistency of the resulting distribu- 
tion. It was emphasized that an additional power of q is 
needed to achieve consistency with the laws of thermo- 
dynamics [13]. The resulting distribution was compared 
with recent measurements from the ALICE [3] and CMS 

Fig. 8. Values of the Tsallis  parameter  q  for  different species 
of hadrons. 
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Particle q T (GeV) χ2/ndf 
π+ 

1.154 ±0.036 
1.146 ±0.036 
1.158 ±0.142 
1.157 ±0.139 
1.134 ±0.079 
1.107 ±0.147 
1.106 ±0.158 
1.114 ±0.047 
1.110 ±0.218 

0.0682 ±0.0026 
0.0704 ± 0.0027 
0.0690 ±0.0223 
0.0681 ± 0.0217 
0.0923 ±0.0139 
0.0730 ± 0.0425 
0.0764 ±0.0464 
0.0698 ± 0.0148 
0.0440 ± 0.0752 

12.01/30 
13.28/30 
16.25/24 
7.06/24 

14.41/21 
14.77/21 
13.18/21 
8.45/21 

10.09/21 

π− 

K+ 

K− 

K0 
S 

p 
p̄  
Λ 

Ξ− 

Table 1. Fitted values of the T and q parameters for differ- 
ent species of hadrons measured by the ALICE [3] and CMS 
collaborations [5], together with the corresponding χ2 values, 
using the Tsallis-B form for the momentum distribution. 

 
 

collaborations [5] and good agreement was obtained. The 
resulting parameter q which is a measure for the devia- 
tion from a standard Boltzmann distribution was found 
to be in the range 1.1-1.2. The resulting values of the 
temperature are also consistent within the errors and lead 
to a value of around 70 MeV. The analysis presented here 
cannot be considered complete as several elements are still 
missing. Most important is the contribution of heavier res- 
onance which contribute to the final number of pions and 
kaons. Their effect on heavier baryons like the Ξ is not as 
large as for pions but nevertheless it is a factor that has to 
be taken into account. This could change the conclusions 
presented here. 
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