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Abstract 

Making decisions is a key component of active learning. Active learning involves both analysis and action in both physical 
and abstract situations. This article examines active learning in robotics with a particular emphasis on approaches suitable 
for embodied learning systems. Robots must possess the ability to learn quickly and adaptably through ongoing online 
deployment. One must select appropriate metrics as targets, provide real-time control, and develop analyses that ensure 
performance and safety while having little knowledge of the environment or the robot itself. This presents a unique set of 
control-oriented issues. We examine the basic building blocks of robotic active learning systems in this paper. We go over 
the kind of learning challenges that robots frequently face, the metrics they use to assess the informational value of 
observations, and the algorithms for creating action plans. We also present a number of examples that illustrate the 
qualitative variations among learning tasks, information measurements, and control strategies, ranging from 
environmental mapping to nonparametric shape estimation. We wrap up by talking about control-oriented open issues, 
such distributed learning and learning under safety constraints. 
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1. Introduction 

“Perceptual activity is exploratory, probing, searching; 
percepts do not simply fall onto sensors as rain falls onto 
ground.  We  do  not  just  see,  we  look.”  (R.  Bajcsy  in 
her 1988 paper Active Perception [1]). The difference be- 
tween seeing and looking is the presence of action—seeing 
is passive and looking is active. Unfortunately, we do not 
use distinct words for passive learning and active learn- 
ing, often leading to confusing the two and unintentionally 
treating “learning” as passive learning with active learn- 
ing as an afterthought. Nevertheless, how we acquire data 
impacts the quality of learning and what is even possi- 
ble to learn, indicating that control—both analysis and 
synthesis—in learning will inevitably be important. More 
than three decades after Bajcsy’s comments, the key ele- 
ments of how control synthesis and analysis should inform 
learning remain largely unaddressed, and the vast major- 
ity of work in learning still focuses on analysis of passively 
collected data; this body of work makes up a statistical 
theory of learning. Still absent is an action-oriented the- 
ory of learning—a control theory for learning. How should 

 

 

control synthesis affect learning? What sort of feedback 
interconnections facilitate learning? 

When prior knowledge and existing datasets are widely 
available, passive learning has proven to be a successful 
tool for constructing parametric representations of statis- 
tical relationships in data. Broadly, passive learning is an 
optimization process in which the parameters of a model 
are fit according to data. The last decade has seen ma- 
jor strides in robotics dependent on the advent of mod- 
ern learning methodologies, particularly variations of deep 
neural networks [2]. However, in settings where previously 
existing data sets are unavailable, and where products 
of human knowledge (e.g., labeled datasets, knowledge 
graphs) do not exist, a robot will have to engage in unsu- 
pervised discovery and acquire the data it needs [3]. We 
refer to this process as active learning (see Figure 1). In 
contrast to passive learning, active learning is a decision- 
making process where agents take actions to gather the 
data that best realizes a learning objective. 

Animals use their bodies to learn. To paraphrase Ba- 
jcsy, we do not just passively learn, we actively learn—the 
pages of a book do not just turn before our eyes while 
we absorb information. For agents with physical bodies, 
such as animals or robots, active learning demands un- 
derstanding and exploiting the role of embodiment and 
physical interaction in learning. Insofar as robotics should 
take inspiration from biology, active learning in robotics 
will involve the purposeful movement of a robot’s body; 
here, control synthesis tools will connect decision-making 
to the resulting movement. 

There is a rich literature on how animals use their bod- 
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ies and movements to improve information acquisition [4– 
12]. For example, in [13] we demonstrated that a variety of 
animals engage in active information acquisition by explor- 
ing their environment in proportion to the local amount 
of perceived uncertainty. In addition to a medium for 
embodied movement plans, physical bodies are indepen- 
dently capable of implicit computation [14, 15], informa- 
tion storage [16], novelty detection [17], and learning [18]. 
By harnessing the power of embodiment and morphologi- 
cal computation [19], active learning presents a promising 
way forward for robotics problems where the outcomes of 
physical interactions may be unknown a priori, such as in 
soft robotics [20]. 

Not only is embodiment and movement paramount to 
information acquisition and active learning, but movements 
themselves can be informative. Recent work analyzing an- 
imal and human movement has begun to interpret physical 
bodies as information channels and motions as information- 
carrying signals. This has led to the development of meth- 
ods that help to understand the pathology of conditions 
such as autism spectrum disorder [21], schizophrenia [22], 
and stroke [23, 24] through an information-theoretic anal- 
ysis of movement. More generally, this suggests that in 
order to realize learning objectives, active learning requires 
measures that capture the information content of an agent’s 
movements. 

Counterintuitively, information-rich movement does not 
always appear productive, orderly, or carefully planned. A 
well-studied example of this is the optimality of diffusion 
in animal foraging—here, purely stochastic motion plans 
have been shown to be highly informative [25–27]. Another 
example of interest to researchers for decades is that of 
playful behavior in animals [28, 29]. One may ask why an- 
imals would expend significant energy on movement that is 
not key to survival; for our purposes, we consider these ac- 
tive behaviors as enhancing learning [30]. Hence, to learn 
through movement, agents must engage in exploratory be- 
haviors that may not always seem useful. 

Despite its clear connections to our understanding of 
learning in animals and humans, the field of active learn- 
ing finds its origins in theoretical computer science [31]. In 
this setting, agents are represented by disembodied algo- 
rithms whose actions are limited to making queries about 
observed data samples. As a result, many modern frame- 
works for artificial intelligence have tended to neglect the 
role of physics and embodiment on the learning process. 
However, adapting to the constraints of the real world is 
crucial to learning in  the  wild.  Even  the  most  success- 
ful traditional machine learning techniques for robot con- 
trol, such as reinforcement learning, rely on “big data” 
generated from simulated rollouts. In reality, robot de- 
ployment is a time and physically intensive activity, and 
robots cannot be instantly reset and redeployed at will. 
To make matters worse, informative data samples are typ- 
ically sparse. Taken together, these issues highlight the im- 
portance of considering sample efficiency and deployment 
efficiency in robot learning. On the other hand, control 

 

 
 
 

Figure 1: The active learning process: A learner leverages in- 
formation measures to formulate actions for collecting relevant or 
descriptive data. Active learning includes the feedback control of a 
system for which the internal state is both a learning system and 
history. 

 

 

theory has a long history of dealing with the constraints 
imposed by the laws of physics, while simultaneously man- 
aging secondary—yet very important—objectives such as 
safety, robustness, and efficiency. 

There are many areas of robotics that will require the 
type of black-box flexibility of machine learning to make 
progress. When principled alternatives to modeling the 
physics of complex interactions between agents and their 
environments do not exist, machine learning can some- 
times be the only way to enable robot control. One area 
in which flexible learning tools are particularly useful is in 
high-dimensional nonlinear sensing, where deep convolu- 
tional networks excel at integrating potentially hundreds 
of complex and highly-redundant sensory signals into com- 
pressed and informative signals [15, 32]. At times, the in- 
teractions between a robot and its environment may be 
infeasible to model either due to properties of the envi- 
ronment (e.g., locomotion in granular media [33]), or the 
robot itself (e.g., compliant soft robots [34]).  Thus, the 
field of robotic active learning has the potential to over- 
come the challenges inherent to robot control and ma- 
chine learning by inheriting the best qualities of both. In 
this review, we highlight important progress made towards 
this goal, and motivate future directions for developing an 
action-oriented theory of embodied learning. 

The organization of  this  review  is  as  follows.  First, 
we cover the history and basic considerations required for 
an active learning system—what there is to learn, how to 
measure information in actions, and how to generate such 
informative actions. Then, we survey key areas of appli- 
cation for active learning and open challenges in the field. 
The authors’ own work plays a role in creating a narra- 
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tive, but with consistent reference to the broad literature 
in robotics on related areas. Section 2 covers a brief history 
of the field of active learning and its origins in the broader 
field of computer science. In Section 3 we cover different 
learning goals, increasing in complexity from learning state 
parameters to abstract features. Then, Section 4 discusses 
measures of information, focusing on those appropriate to 
be used as control objectives by synthesis methods such as 
those in Section 5. In Section 6, we discuss common ap- 
plications where facets of active learning naturally arise, 
whether explicitly or implicitly, in problem formulations. 
Finally, in Section 7 we discuss extensions and open chal- 
lenges followed by conclusions in Section 8. 

 
2. History Of Active Learning 

Since its inception, robotics has been interested in mak- 
ing embodied agents learn and adapt to their surroundings 
like biological organisms [35]. However, due to fundamen- 
tal limitations on computing hardware, programming ma- 
chines [36] and adaptation to external stimuli [37], robot 
learning was limited to the most rudimentary demonstra- 
tions throughout the mid-20th century. After establishing 
his theory of computation [38], Alan Turing shifted his fo- 
cus to the question of whether machines could think and 
learn [39]. Turing’s efforts prompted both the philosophi- 
cal and formal study of artificial intelligence [40]. 

While hardware posed constraints on applied learning, 
the second half of the century saw the founding of the 
field of computational learning theory [41–44]. Analogous 
to computability theory, computational learning theory fo- 
cuses on assessing the “learnability” of concepts under dif- 
ferent models of learning, such as inductive inference [45], 
online learning [46], statistical query learning [47, 48], among 
many others. The diversity of models of learning speaks 
to the difficulty of capturing what we mean when we say 
that a concept is learnable. To this day, useful models 
of learning are being introduced to tackle new problems 
on learnability [49]. Of the many mathematical frame- 
works for learning, the most successful and widely used 
is the Probably Approximately Correct (PAC) learning 
model [43, 50, 51]—a particularly important framework 
because it was the first to bring insights from the the- 
ory of computational complexity to the study of learning. 
Across its many models of learning, computational learn- 
ing theory forms the primary means through which we 
mathematically model and formally understand learning 
as a computational problem. 

The influence of computability theory [52] is particu- 
larly visible in the field’s focus on automata theory and 
linguistics [53], where problems are often framed as learn- 
ing languages or equivalent automata specifying the lan- 
guages. In contrast, much of robotics is grounded in the 
history of industrial automation, where mechanical inter- 
actions are the fundamental object of interest [54].  As 
a result, robot learning focuses on the role of physics on 

sensing, actuation, and mechanical interactions with the 
environment for the purpose of learning. 

One of the most important areas within computational 
learning theory is that of query learning [47, 55, 56]. This 
field is concerned with identifying the classes of functions 
that a “learner” (e.g., an algorithm) can learn by observing 
samples of data provided by an “oracle” (e.g., a teacher or 
an environment) using a given model of learning. At each 
stage of the learning process, the learner has a “learning 
hypothesis” about the nature of the function class that it 
is learning. In the context of query learning, the learner 
is additionally allowed to ask the oracle for information 
about the samples it is observing or about its current learn- 
ing hypothesis [31]. The learner then must make decisions 
about what queries to present to the oracle in order to ad- 
vance its learning objective [57]. In this way, learning is no 
longer framed as a passive process. Instead, it is a decision- 
theoretic process through which the learner takes actions 
in order to further its objective—or in other words, ac- 
tive learning. By leveraging their decision-making, active 
learners can almost always achieve the same performance 
as an equivalent passive learner with exponentially fewer 
data samples [58]. This framing can be restrictive in a 
robotics context where actions have the potential to elicit 
information and affect the environment or learning objec- 
tive. Despite forming a theory grounded in the decision- 
making of learning agents, computational learning theory 
has not concerned itself with these types of practical con- 
siderations that embodied robot learning demands. 

Another theory of learning largely independent from 
those discussed above is reinforcement learning (RL), which 
finds its origins in the study of  conditioning  in  psychol- 
ogy [59]. As originally envisioned, RL refers to the use of 
external stimuli and incentive structures to elicit desired 
behavior out of animals  or  humans  [60].  In  this  sense, 
RL was established as a theory of learned behavior rather 
than learning in-itself. However, its mathematical under- 
pinnings were not established until the second half of the 
20th century in the work of Richard Sutton and Andrew 
Barto among others [61–63].  By grounding their work in 
the theory of dynamic programming [64] and optimal con- 
trol [65], Sutton and Barto created a rich mathematical 
theory of learning and control based on the behavioral psy- 
chology of reinforcement [66]. Typically, an RL problem 
is framed as a Markov Decision Process (MDP) where an 
agent must take actions in order to explore their environ- 
ment and learn how to maximize their reward signal [67]. 
When agents are making decisions and taking actions to 
actively gather data and learn about their objective, we 
consider RL to be a type of active learning.  In contrast, 
if exploration is being handled passively through naively 
randomized simulated experience, we do not. 

Despite its early uses for optimal control [63], RL has 
only recently become a primary technique for robot learn- 
ing due to the many successes of deep RL in continuous 
control [68–70]. However, most methods developed for 
deep RL are ill-suited to robot learning because of their 
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large data requirements, lack of generalizability between 
tasks, as well as their inability to learn incrementally and 
guarantee safety [71–73].  While techniques such as Max- 
imum Entropy RL have taken steps to improve data effi- 
ciency and generalizability in robot learning settings [74– 
76], deep RL is still far off from seamless deployment in the 
real world due to its reliance on simulated experience to 
make progress on learning and control objectives [77–79]. 
Moreover, easily specifying and incorporating safety [80], 
stability [81], controllability [82, 83], or reachability [84] 
remains an open challenge. Taken together, these points 
highlight that—despite being a theory of active learning 
based on the behavior of embodied agents—RL is underde- 
veloped for many robotic applications in its present form. 

In this section we have briefly outlined the historical 
development of active learning as a field. Throughout the 
literature and across its different subfields, we have found 
that although researchers have had great interest in apply- 
ing active learning methods to robotics problems, there 
is still a need for the development of theories of active 
learning specifically for robotics. Such theories of robot 
learning should center the properties of the agent as an 
embodied control system with requirements for stability, 
safety, sample efficiency, and continuous deployment. To 
this end, much of the work that we present in this review 
focuses on aspects of embodiment, and suggests the possi- 
bility of developing a control-oriented theory of embodied 
active learning. 

 
3. What Do Robots Need To Learn? 

What does a robot need to learn from data? Learning 
goals can be grouped into problems of increasing sophis- 
tication and level of abstraction. Here we will distinguish 
between learning parameters, as a relatively simple start- 
ing point, learning models, and learning features. This 
division is by no means unique, but provides a useful tax- 
onomy for discussing what learning goals we may have for 
a robotic system. 

 

3.1. Parameters 

Learning parameters is relevant in many settings. For 
instance, one may wish to determine the location of an 
object, food, or predators. In this case, the parameters of 
interest are spatial coordinates that localize the object. If 
the parameters evolve in time (e.g., a mobile object) they 
may have dynamical properties that can be exploited or 
learned. If a model is known, parametric filters [85–88] 
may be used. When the posterior probabilities of an infer- 
ence model are not expected to be approximately Gaus- 
sian, nonparametric filters, such as Bayesian filters [89, 90], 
histogram filters [91], or particle filters [92–94] are often 
used instead.  Active learning can be critical to overcom- 
ing sensor limitations and identifying a wide variety of pa- 
rameters. A salient setting for active learning is near-field 
sensing. Near-field sensing includes tactile sensing which 

requires mechanical contact and electrosense, where close 
proximity is necessary. Hence, when subject to near-field 
sensing constraints, robots must leverage their agency for 
successful parameter identification. In far-field sensing, 
such as cameras and radar at a distance, actions may play 
a more limited role in parameter identification because the 
sensor range automatically provides substantial informa- 
tion without the need for movement. 

 

3.2. Models 

Models generalize parameters, and can be models of 
either the robot itself, such as a model of the dynamics, or 
the environment, such as a topographical map. The ability 
of a robot to learn a model of its dynamics is important 
in rapidly shifting environments where first-principle mod- 
els struggle to make reliable predictions. The problem of 
system identification is often parametric, focusing on de- 
scribing the dynamics using models whose structure and 
number of parameters are fixed a  priori,  such as in neu- 
ral networks. However, system identification may be non- 
parametric as well, as in Gaussian process regression and 
other kernel-based methods. Nonparametric models may 
be particularly useful when robots operate in unstructured 
or unknown environments. While parametric models have 
also been successfully used in this context, it is difficult to 
know ahead of time that a parametrized model will have 
the representational capacity to characterize the environ- 
ment. This has led to the use of models with an increasing 
number of parameters—sometimes on the order of billions 
of parameters—to ensure that the network can capture the 
properties of the environment. 

 

3.2.1. Mapping 

Mapping is one form of modeling the environment that 
emphasizes its geometry. Mapping applications often use 
occupancy grids [95, 96], coverage maps [91], and Gaus- 
sian process regression to represent spatially-varying phe- 
nomena or high-dimensional belief spaces [97–102]. These 
techniques presume coverage—that data has been taken 
over a sufficiently varied area to reconstruct and represent 
the properties of the environment. The active learning 
approach instead suggests that an agent reacts to data 
it collects locally and then adjusts its mapping strategy. 
While environmental mapping in open air is not an ap- 
plication that necessarily demands the use of active learn- 
ing methods, other types of environments may not be as 
straightforward. For example, underwater exploration is 
difficult because robots are subject to stringent constraints 
on sensing, actuation, and communication. Here, robots 
often need to operate in environments where light levels 
prevent long-range visual monitoring, which demands the 
use of active learning tools in order to construct motion 
plans that incrementally adapt to the robot’s uncertain 
measurements [103–105]. In [106], the authors use con- 
trol and Gaussian process regression to model, map, and 
actively sample the distribution of phytoplankton in the 
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Figure 2: Shape reconstruction: This example shows the active 
identification of an unknown geometry in the environment, using 
binary contact measurements as the measurement modality [107]. 
By developing data-driven models of objects, robots can search for 
and recognize obstacles or tools without needing analytic or CAD 
models. 

 
 

ocean off the coast of Norway, thereby greatly acceler- 
ating environmental monitoring and mapping of oceanic 
resources. 

 

3.2.2. Shape 

Similarly to mapping, nonparametric shape estimation 
is another area of model learning that focuses on the geo- 
metric relationship between collected data samples [108]. 
The shape estimation literature grew from the field of com- 
puter vision, and has traditionally focused on static tasks, 
such as estimating the poses of human bodies [109] or the 
curvature of roads from image samples [110].   However, 
as we increasingly deploy autonomy in the real world, de- 
termining the shape and material properties of unknown 
objects may be necessary to interact with them and po- 
tentially employ them as tools. To this end, the process 
of shape estimation may need to be dynamic and prob- 
ing in nature, requiring that agents leverage their control 
authority to actively learn the properties of the object. 

As an informative example of this kind of learning 
problem, we share some results from our own work. In [111], 
we considered nonparametric shape estimation using contact- 
based  sensors  to  actively  learn  the  shapes  of  obstacles 
in the robot’s environment, which we then extended to- 
wards  data-driven  mapping  and  localization  [107].   Fig- 
ure 2 shows a three dimensional set of objects whose shapes 
are being reconstructed from binary contact measurements 
made by a simulated mobile robot. By actively generating 
trajectories that  make  contact  with  the  object  surfaces, 
we maximize the Fisher  information  of  the  support  vec- 
tor machine  (SVM)  object  model  and  successfully  iden- 
tify them. The enabling insight is the use of the Fisher 
information, which we discuss at length in Section 4, to 
synthesize object-robot interactions that are optimally in- 
formative. 

 

3.2.3. Dynamics 

One of the most crucial learning tasks is that of iden- 
tifying the agent’s own dynamics. Whether learning the 
dynamics is necessary due to their intrinsic complexity, or 
as a result of a sudden malfunction or compliant interac- 
tion, there are many scenarios in which it may be impos- 

sible or infeasible to have an accurate prior representation 
of the system’s dynamics. Self-identifying dynamics is an 
active process, where the agent needs to take actions and 
collect data that explore its different behavioral regimes. 
In some settings, models that are well-specified in certain 
behavioral regimes may have to be augmented through 
data-driven means to work in extraneous conditions. For 
instance, in aerospace applications data-driven techniques 
will have excellent data available for nominal conditions 
but often no data available for specific off-nominal condi- 
tions, suggesting the need for active learning outside of the 
nominal regime [112]. Since the literature on learning dy- 
namics is very diverse, providing a comprehensive survey 
would require its own review [113–117]. Instead, here we 
review a few particular representations of dynamics that 
are of particular interest to the field of robotics. 

Deep neural networks (DNNs) are models comprised 
of many individual units (i.e., computational synthetic 
neurons) with limited capabilities that together, through 
their interconnections, are capable of great representa- 
tional power [2]. As we have discussed earlier in this re- 
view, deep networks are not always suited to the demands 
of robot learning due to their high data and computational 
requirements. Nonetheless, certain network architectures 
have been shown to be well-suited to predicting dynamics, 
such as recurrent neural networks [118], whose capabili- 
ties enable them to predict the global structure of tempo- 
ral dynamics from local measurements. In settings where 
learning does not need to occur rapidly or incrementally, 
carefully chosen deep learning architectures have been suc- 
cessful in learning robot dynamics for control [119, 120]. 
While DNNs have been successful in many robotic appli- 
cations, the online nature of active learning tasks often 
prevent them from being used in these settings. 

A nonparametric alternative to learning dynamics  is 
the use of kernel-based methods [121]. Kernel regression 
methods frame learning and estimation problems as one of 
learning functions embedded in high-dimensional—or even 
infinite-dimensional—spaces defined over the data domain. 
The properties of the function space are determined by 
the choice of kernel, which acts as a generalized inner- 
product that induces a notion of distance between data 
samples in the function space. These types of methods 
have been successfully deployed in robotic systems for both 
dynamics and inverse dynamics learning [122–124]. How- 
ever, as typically formulated, kernel methods do not have 
an easy way to model measurement uncertainty and noise 
in their function spaces. To this end, Bayesian formula- 
tions of kernel methods have been developed [125], the 
most common of which are Gaussian processes. Gaussian 
processes (GPs) are one of the primary objects of inter- 
est in the study of  stochastic  processes  [126].  In  GPs, 
any collection of random variables drawn from the process 
must be jointly Gaussian. Alternatively,  one  can  insist 
that functions of the random variables be jointly Gaussian 
instead, which forms the basis for their application in ma- 
chine learning [127]. In this context, kernels naturally arise 
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in the specification of the mean and covariance statistics 
of the Gaussian process in function spaces. Using GPs, 
researchers have been able to parsimoniously incorporate 
uncertainty and noise into learning robot dynamics [128]. 
However, GPs, kernel methods, and nonparametric learn- 
ing tools at-large typically have difficulty adapting to on- 
line learning settings such as robotic active learning. The 
primary underlying reason is the fact that nonparametric 
methods tend to grow in complexity as a function of data. 
Hence, as a robotic agent acquires more data it becomes 
more computationally expensive to make predictions with 
the model. 

A promising compromise between the representational 
capacity of neural networks and the simplicity of kernel 
methods can be found in techniques like the Koopman 
operator [129]. The Koopman operator was first intro- 

duced in the study of Hamiltonian dynamics and operator 
theory [130]. Formally, it is an infinite-dimensional, but 
linear, operator that describes the evolution of measure- 
preserving dynamical systems in a lifted function space. 
However, to apply Koopman operators numerically they 
must be approximated in finite dimensions using schemes 
like Dynamic Mode Decomposition (DMD) [131, 132]. Al- 

gorithms like DMD use a finite basis for the function space 
that the Koopman operator acts on to describe the under- 
lying dynamics [133]. Koopman operator theory and its 
resulting algorithms have been to a large degree developed 
in the context of dynamics and control, making it an ideal 
candidate for active learning of dynamics in robotics [134– 
137]. The linearity of the operator lends itself to the use of 
canonical control techniques such as linear-quadratic regu- 
lators, allowing for computationally-efficient nonlinear op- 
timal control [138]. An important feature of this approach 
is that it does not scale in complexity with data and allows 
for adaptable incremental learning. The primary caveat 

with employing these methods is the difficulty of choosing 
good basis functions with which to describe the dynamics. 

As an illustrative example of learning dynamics in  a 
context that demands rapid adaptation, we compare pas- 
sive and active learning in the stabilization of a malfunc- 

tioning quadrotor vehicle [115]. In this simulation, we 
equip two quadrotors with a data-driven model of their 
nominal dynamics that they can use for model-predictive 
control. However, at the start of the simulation we disable 
one of the rotors on each robot causing them to free-fall. 
To recover, each robot must update their internal dynam- 

ics model and stabilize themselves using control. Both 
agents have a single second during which they can collect 

data to adapt their dynamics models, after which they 
switch to a stabilizing controller that tries to regain con- 
trol of the free-fall. Crucially, one agent learns passively 
and another actively by optimizing the Fisher information 
with respect to the unknown Koopman operator, which 
we discuss in the next section. Figure 3(a) shows snap- 
shots of the different agent trajectories, indicating that 
the active learning agent is able to stabilize itself much 
more rapidly than its passive counterpart (see Figure 3(b) 

 

 
Figure  3:   Online   quadrotor   recovery:    Rotor  vehicle  recov- 
ery using active learning in a real-time single-shot learning con- 
text [115]. The rotor vehicle with the blue trajectory uses an actively 
learned Koopman operator representation of its dynamics. The green 
trajectory is the result of a passively learned Koopman operator 
representation of the dynamics. The rotor vehicle with the pas- 
sively learned representation drops further in altitude—potentially 
crashing—before recovering after one rotor is disabled. 

 
 

as well), potentially avoiding a crash.  The active trajec- 
tory greatly exceeds the information gain of the passive 
approach (Figure 3(c)) while also achieving lower stabi- 
lization error (Figure 3(d)). Hence, by using control and 
movement to optimize information measures, robots can 
learn dynamics faster and more reliably. 

 

3.3. Features 

The final and most broad category of learning goals we 
discuss is that of feature learning. Consider being blind- 
folded and handed a baseball and a tennis ball in either 
hand at random. Most people would likely be able to tell 
them apart with ease. But what is it about either ball that 
differentiates one from the other? What kinds of proper- 
ties best represent each ball and its characteristics? De- 
spite having tens of thousands of nerve endings embedded 
in the palm of our hand, we only need to track a few prop- 
erties to be able to distinguish between the balls,  such 
as texture and weight. We refer to the general problem 
of finding informative representations of high-dimensional 
data that can aid in a task as feature learning. 
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In the pattern recognition and machine learning litera- 
ture, features are any measurable characteristics of a phe- 
nomenon being observed [139]. Traditional feature learn- 
ing is the use of machine learning techniques to repre- 
sent the “intrinsic” structure of data from raw and pos- 
sibly highly-redundant measurements [140]. Recent work 
in this domain has focused on the use of deep learning 
towards finding succinct representations of human move- 
ment [141] and speech [142]. In robotics, tasks are not 
always well-specified and disentangling the relationship be- 
tween a robot’s internal state and the intended goal may 
be difficult. This is primarily a challenge in deep rein- 
forcement learning where problems can become intractable 
when a naive state representation is used. To this end, 
feature learning can be leveraged towards making deep 
RL methods computationally tractable, and to develop 
schemes that better generalize to the variety of sensory 
inputs to which an RL agent may be exposed [143]. 

A simple example of feature learning can be seen in 
the Koopman literature. As we previously mentioned, 
finding the correct choice of basis functions for arbitrary 
dynamical systems can be very difficult. Nonetheless, re- 
cent work has been able to construct basis functions that 
best describe dynamics—also known as the Koopman op- 
erator eigenfunctions, or the intrinsic coordinates of the 
system—using deep learning [114, 135, 144]. In general, 
feature learning of this sort will be particularly important 
for robots with high-dimensional sensing modalities such 
as e-skins [145], or computer vision [146], and active learn- 
ing can aid in enhancing rapid identification of intrinsic 
coordinates. 

Our discussion in this review focuses on measures in 
Section 4 and synthesis tools in Section 5 for active learn- 
ing using location and other low dimensional learning goals 
as examples. But the learning goal can be very high di- 
mensional, as in the case learning dynamics of a vehicle, 
or in the case of learning representations (e.g., machine vi- 
sion applications). Regardless of whether a learning goal 
is low dimensional or high dimensional, the robot still has 
the same control authority to affect learning—it can move 
its body and take other physical actions to evoke response 
and facilitate model updates. 

 
4. Measures  for  Learning 

Active learning is rooted in the extraction of informa- 
tion from sensors [1, 94, 147–152]. Accordingly, measures 
of information should be expected to play a significant 
role. The aspects of the objective that can be captured by 
different information measures as well as how this informa- 
tion can be quantified is key in both control analysis and 
optimal control synthesis. The approach we discuss here 
follows this perspective, looking for measures appropriate 
both for information needs and suitable for numerical syn- 
thesis. In this section, we cover three important measures 
relevant to active learning—entropy, Fisher information, 
and ergodicity. 

4.1. Entropy 

Entropy-based measures have been employed in a wide 
range of action sensing results to calculate the expected in- 
formation gain for each potential action before collecting 
measurements [86, 93, 101, 149, 153–166, 166, 167, 167– 
170]. This modern concept of entropy was developed by 
Claude Shannon for use in the communication and trans- 
mission of information [171]. Shannon was concerned with 
the amount of information necessary to reproduce the con- 
tent of an information source.  To this end, entropy is 
the expected amount of information or “uncertainty” con- 
tained in a random variable. In the case of a discrete 
random variable X where each xi is a different outcome of 
the variable, the amount of information content in a par- 
ticular  event  is  defined  by  I(xi) =   log p(xi),  referred  to 
as bits when in base 2. The entropy of X is the expected 
value of the information content of each of the possible 
events. 

 

H(X) = − p(xi) log p(xi) (1) 
i 

The information content of a particular event decreases 
as the probability of that outcome increases, so low prob- 
ability events provide more information than high proba- 
bility events. As entropy is the average value of the in- 
formation content of a random variable, the maximum 
value of H(X) for X, would occur when each outcome 
of the random variable is equiprobable, i.e., when there is 
maximum uncertainty about a particular outcome. Thus, 
any particular outcome for a uniformly distributed ran- 
dom variable does not provide much information. In the 
context of robotics, this is an explanation for why rare or 
sparse events are particularly valuable to a robot’s estima- 
tion process. 

By calculating the Expected Entropy Reduction (EER) 
of each candidate action, measures of entropy can be read- 
ily applied in the context of active sensing. However, ex- 
haustively searching for an optimally informative solution 
over sensor state space and belief state is a computation- 
ally prohibitive process, as it is necessary to calculate an 
expectation over both the belief and the set of candidate 
control actions [85, 86, 101, 158, 161, 172]. Alternatively, 
the expected information gain can be locally optimized by 
selecting a control action based on a local estimate of the 
expected information [88, 90, 92, 94, 95, 156, 162, 166, 173]. 
Often times, these methods do not or cannot incorporate 
general sensor dynamics [88, 90, 156, 166, 173] and even 
the global strategies are likely to suffer when uncertainty 
is high and information diffuse [91, 100, 174]. 

 

4.2. Fisher Information 

Active learning relies on collecting informative sensor 
measurements to support the learning process. In order 
to do so, there must be a way to locally measure the in- 
formation contained in sensor readings.   Used commonly 
in maximum likelihood estimation, Fisher information is 
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For active learning applications, measurement models 
can play an important role in calculating information mea- 
sures over a space. To estimate a parameter vector α, the 
Fisher information matrix has each element (i, j) given by: 

I  (x, α) = 
∂Υ(α, x) T

Σ−1 ∂Υ(α, x) 
, (3)

 
i,j ∂αi ∂αj 

 

 
 
 
 
 

Figure 4: Fisher information: A measurement  model  indicates 
how a sensor will respond to the unknown parameter α, based on 
the current state. In SLAM applications, the measurement model 
might be a model of the detection of landmarks in an environ- 
ment. The Fisher information distribution over landmarks provides a 
mechanism for determining what states the dynamical system should 
achieve to provide maximally informative measurements. 

 

 

a method of quantifying the amount of information that a 
random variable X contains about an estimate of an un- 

known parameter, or vector of parameters α   RM .   Us- 
ing p(x α), the density function of X parametrized by the 
value of the vector α, one can determine the likelihood of 
an observation x given a value of α. The Fisher informa- 
tion is an M M matrix that captures the local sensitivity 
between parameters and observations [170, 175]: 

where the multi-dimensional noise is assumed to be zero- 
mean Gaussian with covariance Σ. Intuitively, Fisher in- 
formation can be expected to be higher where the expected 
measurement signal is greater than that of the noise. The 
expected information density EID(x) over a search space 
can be constructed by computing the expected Fisher in- 
formation with respect to a probability distribution rep- 
resenting an estimate of a parameter p(α). This EID(x) 
would then form the information landscape against which 
active learning decisions are made and then executed. 

As an example, we consider the use of the Fisher infor- 
mation in Simultaneous Localization and Mapping (SLAM) 
problems subject to measurement models of the form dis- 
cussed above. While the SLAM literature in robotics is 
diverse and well-established, the more recent field of ac- 
tive SLAM has seen much growth [179]. Active  SLAM 
makes use of representations of uncertainty and informa- 
tion to generate exploration plans. In active SLAM, dif- 
ferent information measures can capture different features 
of an environment. In Figure 4, measurement models for 

I(α) = EX 
 ∂ 

∂α 
log p(x|α) 

 ∂ 

∂α 
log p(x|α) 

 T

.
 
α
i
, (2) 

landmark detection are used to provide a basis for cal- 
culating information measures to inform the agent’s ex- 
ploration plan. In this case, the Fisher information over 

where the expectation is taken over realizations of X at a 
given value of the parameter vector α. If p(x α) is highly 
sensitive to changes in α—e.g., the distribution of observa- 
tions exhibits a steep dependence on α—then for a given 
measurement there will be a small range of highly probable 
values of α. If p(x α) is not sensitive to changes in α, then 
there will be many candidates of comparable likelihood. 

In robotics, Fisher information is well suited for mea- 
surement models that are naturally parametric (e.g., size, 
weight, location). Measurement models, sometimes called 
observation models, are predictions of how unknown vari- 
ables will impact a sensor reading. This sensor reading 
can be very sophisticated, like a camera being used in a 
pixels-to-torque application [176], or very simple, such as a 
one-bit sensor being used for trajectory tracking [177, 178]. 
The measurement model provides a way of expressing what 
the robot is attempting to learn in terms of its sensing ca- 
pability and means to adjust its sensors. A commonly used 
measurement model form is z = Υ(α, x)+∆, where z is the 
measurement, α is the parameter being estimated, x is the 
state of the agent, and ∆ is (possibly multi-dimensional) 
zero-mean Gaussian noise. This model is in the form of a 
sum of a deterministic term—typically modeled by first- 
principle physics—and a noise term which can be rather 
challenging to justify, since most robotic applications will 
not have such convenient additive normal distributions. 

each landmark attracts the robot to landmarks with lower 
uncertainty, thereby enabling efficient loop closure. This 
allows an agent to discern an ensemble of locations that 
are expected to provide more informative measurements. 

 

4.3. Ergodicity 

Ergodicity is a fundamental property of dynamical sys- 
tems and stochastic processes. Formally, achieving ergod- 
icity implies that the dynamical system uniformly visits all 
parts of the space in which it exists [180]. However, more 
often what we mean when we say that a system is “er- 
godic” is whether or not it satisfies the pointwise ergodic 
theorem [181]. In this sense, being ergodic requires that 
the system spend time in regions of space in proportion to 
the measure of said regions. The specific measure used can 
vary with context, but very often probability measures are 
used. 

In engineering contexts such as active learning, we are 
free to choose or construct the spatial measure. Particu- 
larly, when a system is ergodic with respect to measures 
representing an information distribution over the space, 
ergodicity demands perfect asymptotic sampling of infor- 
mative states. As a simple example, consider a system tra- 
jectory x(t)      and a probability density function (PDF) 
capturing the expected distribution of information over the 
space. If the trajectory is ergodic, then the amount of time 

h     
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Figure 5: Ergodicity:  For an agent to be ergodic with respect to 
a target distribution, the spatial statistics of the agent’s trajectory 
must match the statistics of the target distribution. This means that 
the time spent in a particular area is proportional to the density 
of the target distribution in that area. Here an agent traverses a 
bimodal distribution. The size of each waypoint is proportional to 
the time spent at that location. 

Figure 6: Fourier transform of a trajectory: The Fourier trans- 
form of a constant speed trajectory represents the trajectory in the 
form of a spatial distribution. The representation of the trajectory by 
its transform changes in granularity for k = 1, 3, 5, 10, 20, 50 Fourier 
coefficients. 

 
 

butions comprised of sequences of impulses: 

1 
∫ T 

 the agent spends in each neighborhood N ⊂ X is going to C(x) = T δ [x x(t))] dt, (5) 0 
be proportional to the amount of information in     as mea- 
sured by the PDF (see Figure 5). Hence, designing ergodic 
dynamics with respect to desired measures is of interest to 
active learning [182]. However, in order to do so we need 

where δ is the Dirac delta [183]. Then from the properties 
of the Dirac delta function, we can calculate the Fourier 
coefficients 

1 T 

a metric that captures how “ergodic” our trajectories are. 
Because perfect ergodicity is only possible on infinite 

ck = 
T

 Fk(x(t))dt, (6) 
0 

time horizons, we require a metric that can be maximized 
over finite-horizons through decision-making—such a met- 
ric was developed in [183]. Metrics on ergodicity provide 
a principle of motion [13, 24] similar to energy minimiza- 
tion and error minimization, and can be used to synthesize 
automated exploration for learning, as we will see in Sec- 
tion 5. The ergodic metric in [183] provides a method for 
comparing a trajectory x(t)—a singleton at any given time 
t—to a distribution Φ(x) through their spatial Fourier 
transforms. This suggests that one can compare the coeffi- 
cients ck of x(t) and φk of Φ(x) respectively and measure a 
distance between the two. In general, it is not obvious how 
one might do this otherwise since information content be- 
tween dimensionally different objects is typically not well 
defined. 

Comparing how “close” two quantities are to each other 

where the coefficients take on the value of the basis func- 
tions averaged over a time window of duration T . An 
example of such a spatial representation is shown in Fig- 
ure 6, where a trajectory along with its Fourier decompo- 
sition is shown for different numbers of coefficients ck. As 
the number of coefficients k increases the spatial resolution 
of the trajectory improves, showing how the statistics of a 
trajectory may be represented as a spatial distribution. 

With this in mind, the ergodic metric represents a 
distance from ergodicity that is measured from a time- 
averaged trajectory x(t) with respect to  a  distribution 
Φ(x). This distance is calculated by imposing a norm on 
the difference between the trajectory’s ck and the distri- 
bution’s φk coefficients. Particularly, we take the Sobolev 
norm between the coefficients by using the sum of the 
weighted squared distance between them: 

is imperative for control when using optimization-based K K 

methods. To compute the Fourier coefficients φk of a dis- 
 

 

 
φk = φ(x)Fk(x)dx, (4) 

X 

E(x(t)) = 
Σ 

· · · 
Σ 

Λk |ck − φk|
2 

(7) 
  

where K is number of Fourier coefficients used for each of 
the n dimensions, and k is a multi-index (k1, ..., kn).  The 
coefficient  Λk  = (1 + ||k||2)−s  is  a  weight  where  s =  n+1 , 

where Fk’s represent the choice of Fourier basis functions. 
For trajectories, we begin by interpreting them as distri- 

2 

which places larger weight on lower frequency information, 
ensuring convergence [183]. It is worth noting that spec- 
tral methods, and the ability to generate a norm on a tra- 
jectory x(t) using them, offer opportunities in measuring 

kn=0 k1 =0 tribution Φ(x), we use the inner product 

− 
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entropy as well. The entropy of a distribution could also 
be measured in the Fourier domain—yielding an objective 
function that is differentiable and amenable to control syn- 
thesis, enabling one to avoid approximating entropy in an 
optimization with Fisher information (e.g., as in [184]). 

The measures discussed in this section form the basis 
for how we measure performance of an active learning sys- 
tem. The next section focuses on synthesizing decisions 
that optimize, or at least improve, those measures. 

 
5. Control Synthesis for Active Learning 

Active learning has a wide range of applications in 
robotics including prioritized decision making [159, 185], 
inspection [165], mine detection  [186],  object  recognition 
or classification [155, 160, 187], next-best-view problems [156, 
157, 188], and environmental modeling [97, 98, 189]. As 
a result, particular controller architectures may be advan- 
tageous for different environments, tasks, and constraints. 
Here, we survey several model-based optimal control meth- 
ods that provide distinct advantages for active learning. 

Model-predictive control (MPC) is an optimal control 
framework that optimizes current actions with respect to 
an objective while taking into account the future behav- 
ior of the system over a finite time horizon. Once the 
current action is taken, MPCs reoptimize from the new 
starting point and continually plan actions throughout the 
receding horizon. MPCs are particularly suited to active 
learning because receding horizon planning lends itself to 
continuous incremental learning, while simultaneously en- 
abling assessments of the safety and stability of trajecto- 
ries. In contrast, other optimal control approaches such as 
the linear-quadratic regulator (LQR) must solve the entire 
control problem without replanning. 

One of the primary optimal control algorithms is Dif- 
ferential Dynamic Programming (DDP) [190], which is an 
extension of the seminal work by Bellman [191]. DDP is 
a model-predictive method requiring second derivatives of 
the dynamics to realize quadratic convergence to the opti- 
mal solution. While DDP has fast convergence guarantees, 
calculating the Hessian of the dynamics can be computa- 
tionally intractable. If one is willing to forego the fast 
convergence rate by disregarding the second order terms 
of the control solution, DDP becomes equivalent to the 
first order iterative LQR (iLQR) method. DDP and iLQR 
have both been shown to be effective in the context of 
robot control in a variety of applications [192]. For exam- 
ple, in [193] the authors use local trajectory optimization 
methods in combination with RL to learn policies for dex- 
terous manipulation with a five-fingered robotic hand. In 
scenarios where the dynamics are known or easily mod- 
elled, and their Jacobians and Hessians are inexpensive 
to compute, DDP and iLQR may be well-suited to active 
learning applications. 

A method that generalizes MPC to both convex and 
nonconvex objectives is the sampling-based Model Pre- 
dictive Path Integral (MPPI) control algorithm [194]. In 

MPPI, Monte Carlo sampled trajectories are used to ap- 
proximately extremize a free energy objective [195]. These 
types of objectives are designed in analogy to thermody- 
namic free energy from the statistical mechanics litera- 
ture and can be used to synthesize control [196]. More- 
over, the synthesized control actions are formally equiva- 
lent to Bellman optimal control without the need for com- 
puting derivatives, and their computation can be easily 
parallelized [197]. As a result, MPPI is particularly well- 
suited for use in learning problems where the dynamics of 
the agent are non-differentiable or too complex to differ- 
entiate in a computationally-efficient way as with neural 
network models. For example, in [194] the authors use 
MPPI to learn a neural network model of the dynamics of 
an auto-rally autonomous race car. However, depending 
on the structure of the task, generating enough simulated 
trajectories to sufficiently sample a learning objective may 
become prohibitive. 

Another model-based control synthesis method is Se- 
quential Action Control (SAC), which is inspired by hybrid 
systems theory [198]. Unlike other MPC techniques, SAC 
explicitly tries to expend the least control effort possible 
in generating actions by taking into account the benefits of 
taking optimal actions as opposed to alternative policies 
or doing nothing. SAC simultaneously finds the  actions 
that optimize an objective, the best time to apply said 
actions, and the application duration. Due to its hybrid 
specification, SAC can naturally handle non-smooth dy- 
namics, and can also be easily wrapped around other con- 
trollers to enable more exotic control architectures [199]. 
In [200], SAC was used for active parameter estimation 
with  a  robotic  system.    This  work  uses  SAC  to  control 
a robot to determine the length of a pendulum by max- 
imizing the Fisher information with respect to the pen- 
dulum parameters. The SAC control actions sequence is 
piecewise continuous, with generally short application du- 
rations for any control. This allows a robot to reactively 
generate motions towards information dense regions. How- 
ever, like most MPC techniques, it requires having access 
to the derivatives of the objective and dynamics,  which 
can constrain its usage in learning scenarios as previously 
discussed. 

An important consideration when choosing a controller 
for active learning is the global characteristics of the search 
process. Depending on the structure of the learning task, 
there may be a single optimum that represents the true 
parameter value that is being estimated. Other learning 
tasks require that the agent avoid fixating on a single in- 
formation source and instead visit many sources. We dis- 
tinguish between these approaches by referring to them 
as myopic and non-myopic respectively. Myopic learning 
uses local algorithms that greedily take actions over short 
horizons that optimize the immediate learning objective. 
While these methods are prone to getting trapped in lo- 
cal minima, they have lower computational overhead than 
non-myopic learning methods. Non-myopic approaches 
plan control actions over long time horizons so as to pro- 
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Figure 7: Infotaxis: Upper panel: A cat searches for the two yellow 
mice. The distribution around the mice represents the probability of 
detecting the mouse at that location where white is high probability. 
The gradient in the cone around the cat represents the cat’s mea- 
surement model. The cat has a mental image of the expected local 
reduction in entropy for moving up, down, left or right. Lower panel: 
This is an example of an  infotactic trajectory  of an  agent searching 
for target locations, represented by the yellow stars. The likelihood 
of detecting the target is represented by the distribution around the 
target locations, becoming more dense closer to the target. The mea- 
surement model encodes the ability of a camera to detect an object 
at a particular range and angle of attack. The search strategy selects 
the direction of movement that maximizes the expected entropy re- 

to show that a search plan does not need to depend on en- 
vironmental gradients, such as the concentration of a scent 
smoothly increasing in proximity to a flower. Instead, an- 
imals may sense traces of a source dispersed by wind or 
currents and formulate a movement strategy based on in- 
frequent detections. 

In this work, an agent attempts to localize a target 
or source in a 2D environment based on detections of the 

target. To generate an infotactic trajectory, the searching 
agent chooses a control action at each time step that lo- 

cally maximizes the expected reduction in entropy, thereby 
maximizing expected information gain. Concretely, the 

agent considers moving to adjacent positions on a lattice, 
or staying in the same location to take more measurements. 

To determine an action, it is necessary to have a proba- 
bility distribution p(r) representing the unknown location 

r of the source. The probability of detecting the source 
at a given location is dependent on the distance from the 

source, meaning that the record of detections along the 
trajectory of the searcher, x(t), carries information about 

the source location. When a detection event occurs, the 
times and coordinates are stored in the random variable 

t. From this record of detections, the searcher is able to 
represent the location of the source as a posterior probabil- 
ity distribution that is updated based on the measurement 
taken at each time step. 

duction at each time step. The infotaxis strategy succeeds at finding 
p (r ) = 

   Lr0 (Tt)  (8) 
 

only one of the two targets in the environment and stops searching. 
 

 

duce coverage over distinct information sources.  These 
are often used to avoid local minima associated with fixa- 
tion [98, 100, 101], and can take advantage of approximate 
solutions [86, 87, 91, 98–100, 164, 186, 201, 202]. 

Choosing a mechanism by which one can avoid my- 
opic learning is critical to operating in environments that 
have unmodeled effects, such as visual occlusion, where the 
expected most informative state may not provide informa- 
tion. For example, a camera taking a picture of a person 
behind an a piece of furniture does not benefit from mul- 
tiple pictures taken from the same state. As a result, dy- 
namic coverage of high information density areas can keep 
a robot collecting good data while acknowledging unmod- 
eled uncertainty effects through decision-making. Taking 
these factors into account can be critical to the success of 
the active learning process. Next, we will examine two ap- 
proaches to active learning and exploration—infotaxis and 
ergodic control—that take opposing attitudes towards this 
question. 

 

5.1. Infotaxis 

Inspired by animals’ search for chemical sources in a 
fluid such as air or water, infotaxis is an information- 
maximizing search strategy using entropy reduction as an 
information criteria [153]. This technique was developed 

t     0 ∫ 
Lx(Tt)dx 

Here, Lr0 is the likelihood of detections Tt for a source 
located at r0. From the posterior distribution one can 
calculate a control action that minimizes the expected en- 
tropy at the next time step by selecting a set of potential 
actions, computing the EER given the current p(r), and 
then selecting the action that provides the minimal EER. 
This strategy can be computationally prohibitive for many 
systems. 

The trajectories produced by infotaxis exhibit similari- 
ties to biological organisms such as moths or bacteria that 
engage in olfactory search [203]. However, infotaxis-type 
approaches can fail when there are distractors—states that 
appear similar to the target but are not the target—in the 
environment [13]. The searcher may conflate the actual 
target with the distractor and then ignore the intended 
target. Practically, infotaxis can only be implemented us- 
ing short time horizons as the computational requirements 
of predicting for longer horizons are significant. For each 
control action considered, the expected entropy reduction 
must be calculated, including calculating a posterior for 
each possible outcome of the measurement random vari- 
able. Figure 7 provides an example of an infotactic search 
with two target locations. Here, the agent successfully 
determines the location of one source and stops search- 
ing. This strategy is purposefully ignorant of a signature 
that may conflict with the perceived location of the target 
in favor of detecting the same target to increase its cer- 
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Figure 8: Ergodic  control   with   respect   to   the   expected   entropy   reduction   over   the   search   space:   Upper  panel:   A  cat  searches 
for two targets represented by the yellow mice. Here, the cat has access to its past trajectory and has a mental image of the expected entropy 
reduction over the whole search space. Middle panel: An agent is searching for two targets located at the yellow stars. The information 
distribution becomes more dense closer to the targets. Here the agent takes a measurement and updates its belief using the same measurement 
model and likelihood function as in the infotaxis implementation. Lower panel: The agent chooses its next control action based on the global 
expected entropy reduction. This is determined from its belief of the information content in a particular location. 

 
tainty.  This example illustrates that the infotactic strat- 
egy is myopic when confronted with multiple sources or 
environments with convincing distractors. 

While an infotactic search strategy can experience diffi- 
culties when there are multiple targets in the environment 
that require persistent monitoring, it is well suited to re- 
act to sporadic cues and requires only local information. 
Infotaxis represents one of the most straightforward exam- 
ples of active learning in which an agent acts greedily to 
maximize expected entropy reduction. 

 

5.2. Ergodic Control 

Recent work by the authors and colleagues has ana- 
lyzed biological motion by introducing energy constrained 
proportional betting [13, 204], where  the energetic  cost 
of movement is balanced against the desire to gain sen- 
sory information about a source. This approach uses the 
ergodic metric, discussed in Section 4.3, to quantify how 
well a trajectory covers a distribution of expected entropy 
reduction. The resulting algorithm produces trajectories 
that balance informative sampling—collecting many sam- 
ples in high information areas—with the amount of en- 
ergy expended from motion. These types of trajectories 
were observed in the behavior of electric fish, moles, and 
cockroaches. This suggests that the strategy of energy 
constrained proportional betting provides a competitive 
hypothesis for the ways in which living creatures collect 

information about their surroundings, and may be a ro- 
bust approach for robotic systems to acquire information. 
Extensions and variations of this idea now arise in many 
robotic applications [205–213]. 

If the goal of infotaxis is  to  maximize  the  informa- 
tion content of a series of measurements collected along 
a trajectory, the goal of ergodic  control—first  developed 
in [183]—is to control the spatial statistics of a trajectory 
x(t) to match those of an expected information density 
distribution EID(x). This requires the  choice  of  a  norm 
on the difference between the distributions  EID(x) and 
the trajectory x(t) interpreted as a distribution C(x), de- 
fined in Equation (5). To this end, we use the ergodic 
metric from Section 4.3 as an objective to synthesize maxi- 
mally ergodic trajectories for general nonlinear systems us- 
ing tools from model-predictive control [204]. However, we 
note that any trajectory optimization tools or direct opti- 
mization tools could be used; we use the results from [204] 
primarily because they are amenable to real-time compu- 
tation [214]. 

The first thing to note is that the ergodic metric in 
Equation (7) is not of the form of a running cost—as a 
result it is not a Bolza problem (although one can turn it 
into a Bolza problem by appending the Fourier coefficients 
to the state vector [215], creating an infinite dimensional 
state space). Nevertheless, one can calculate the adjoint 
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tial equations based on elastic body mechanics). Data- 
driven modeling is a natural alternative when first prin- 
ciple arguments are either not tractable or do not involve 

where the dynamics are represented by x˙ = f (x, u), and the use of a state space. 
get a descent direction for locally minimizing the ergodic 
metric [216]. Other approaches can be used that lead to 
slightly different solutions (e.g., the projection-based tra- 
jectory optimization method for ergodic control in [204, 
217, 218], where higher-order convergence properties come 
at the expense of high computational cost). A key prop- 
erty of the metric    is that it is differentiable with respect 
to x(t), so most optimal control techniques can be easily 
applied. 

An example of an ergodic trajectory can be seen in 
Figure 8, where the agent is exploring with respect to the 
expected entropy reduction distribution over the whole en- 
vironment. The agent is able to successfully locate both 
target locations in this scenario because the ergodic con- 
trol strategy is amenable to persistent monitoring of mul- 
tiple targets. As perfect ergodicity can only be realized as 
time goes to infinity, the agent will continue to explore the 
space. Using infotaxis, the agent would conclude its explo- 
ration once a target has been detected. Here, we make use 
of global information to plan control actions over longer 
time horizons. 

With both these local and global information-based 
synthesis techniques in mind, we next move on to applica- 
tions in robotics that will depend on active learning strate- 
gies. 

 
6. Applications in Robotics 

While the landscape of applications for active learning 
is almost as broad as that of machine learning itself, here 
we will focus on settings where datasets are rarely avail- 
able ahead of time. Active exploration applications such 
as search and rescue or mapping are particularly relevant 
in this class of problems, especially when the environments 
are dynamic and hard to predict. We also discuss applica- 
tions in which system models are either unknown or diffi- 
cult to parametrize, as is the case for soft robotics and for 
many of the areas of application of imitation learning. 

 

6.1. Soft Robotics 

Soft robots are made from compliant materials, en- 
abling them to be well suited for delicate tasks and en- 
vironmental adaptation [219–221]. Unfortunately, precise 
modeling and control of soft robots poses challenges be- 
cause soft materials are continuously deformable and thus 
nominally have infinite degrees of freedom. There is no 
clear method of representing the geometry of such a robot 
without making significant simplifications [20]. The most 
important functional property of a soft robotic system— 
deformation in response to the environment—makes soft 

Learned representations, such as those constructed by 
DNNs, have been shown to find input to output mappings 
that predict the behavior of soft robots [222]. However, 
these models are difficult to apply using known model- 
based control techniques. Alternatively, the Koopman op- 
erator has also been used for modeling  and  control  of 
soft robots [137]. Described earlier in Section 3,  Koop- 
man operators provide a linear representation for nonlin- 
ear dynamical systems that is compatible with linear con- 
trol methods such as LQR synthesis. In practice, a data- 
driven approximation is adopted. As an example, [137] 
develops a model predictive controller with a Koopman 
operator representation of a soft robotic arm for tracing 
reference trajectories. The data collection strategy for soft 
systems plays an important role in determining a model. 
For instance, though obvious, data collected while an end- 
effector is out of contact with the environment cannot pro- 
vide useful  modeling  data.  In prior work we showed that 
a Koopman operator representation of a robotic system 
can be actively learned using information-theoretic strate- 
gies [114]. 

Despite the complexity that soft elastic structures in- 
troduce to the analysis of robotic motion, soft robots can 
beneficially exploit these physical properties. For exam- 
ple, soft structures can be leveraged as a computational 
resource, sometimes called morphological computation or 
embodied intelligence [223]. A soft body that deforms 
around an object, in principle, will make manipulation eas- 
ier, and will imply that the amount of explicit computation 
needed will be lower in exchange for the implicit compu- 
tation afforded by the soft body. For instance, [224] shows 
that stable hopping behavior of a soft underwater robot 
can be achieved experimentally by dynamically changing 
the size of its body. Moreover, with actuator saturation, 
adapting the morphology of the robot’s body was the only 
route to achieve stable behavior, implying that control over 
the continuous shape properties of the robot was key to 
task success. 

In addition to articulation, sensory acquisition via mor- 
phological computation is connected to biological systems 
and present in structures such as the cochlea of the hu- 
man ear [225] and the bodies of octopuses [226]. While 
data can be passively collected through the physical struc- 
ture, active sensing is a biologically motivated extension. 
In [120],  the authors build a perception system to learn 
the kinematics of a soft actuator and  estimate  interac- 
tion forces with embedded sensors and recurrent neural 
networks. In their approach, the authors consider the re- 
lationship between action and perception in the learning 
process by quantifying sensor information as a result of 
commanded actuation information. Work in [227] uses a 
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soft robotic probe to palpate imitation tissue to determine 
the location of a hard tumor-like nodule. The soft robot 
was able to adjust its stiffness across iterations of the pal- 
pation task based on information metrics calculated from 
human test subjects. These findings suggest that active 
haptic perception through physical changes to the probe 
improves estimation accuracy, motivating active learning 
techniques that could automate learning for this and other 
soft systems. 

 

6.2. Search and Rescue 

Prevention, response, and recovery from disasters can 
be dangerous for emergency professionals who may need to 
interact with areas affected by events such as hurricanes, 
oil spills,  and earthquakes.  Disaster robotics is an area 
that works to augment the capabilities of workers by de- 
livering real-time data to experts and intervening in the 
environment [228]. The need to efficiently search an envi- 
ronment is an issue at the core of disaster robotics. One 
of the most visible examples of the need to search an ex- 
tremely large, dynamic environment in recent years is the 
investigation of the crash site of Malaysia Airlines Flight 
370 (MH370) in March of 2014. In the first 52 days af- 
ter the crash, the Australian government reported that air 
crafts and surface vessels covered an area of over 1.6 mil- 
lion square miles. By June of 2018, the final search effort 
was suspended without success. Although there may be 
many points of failure in this search effort, one dimension 
involved robotic technologies that scanned the bottom of 
the ocean that were incapable of reasoning about poten- 
tial debris signatures, the dynamic environment, and their 
own capabilities. 

When searching large areas where information is sparse, 
active coverage algorithms are important in determining 
important areas of a search region and the schedule to 
visit these regions. Coverage algorithms are used in many 
robotic applications such as underwater exploration [229], 
agriculture [230], and inspection [231]. The goal of cover- 
age algorithms is to visit all points in an area or volume 
while avoiding obstacles [232]. Commonly used approaches 
for coverage, a taxonomy of which is included in [233], 
include cellular decomposition or grid-based methods to 
divide the area into manageable sections [234–237]. How- 
ever, as the complexity of the environment increases, the 
number of cells necessary to represent the environment in- 
creases. These methods typically do not take into account 
the physical properties of sensing capabilities of the robots 
or the dynamics of the environment. As a result, coverage 
is treated as both necessary and sufficient for capturing 
needed data. This attitude about coverage can be seen in 
the search strategy of the MH370 investigation which fo- 
cused on area coverage, neglecting factors such as how the 
ocean currents might pull debris away from the site [238]. 

 

6.3. Localization and Mapping 

SLAM algorithms create a map of an unknown envi- 
ronment while simultaneously estimating the state of the 

robot within that environment. This is a major success 
story in robotics, with the current flood of driverless car 
technologies all dependent upon SLAM algorithms. When 
navigating an unknown environment, a robot may lose its 
ability to localize itself due to accumulated small errors in 
sensors and actuators, known as representation drift. To 
correct for this drift, SLAM algorithms use loop closure— 
the task of identifying whether an agent has returned to a 
previously visited location—to maintain an accurate rep- 
resentation of the location of the robot relative to envi- 
ronmental features. To maintain loop closure, the robot 
revisits regions with low estimation uncertainty or infor- 
mative features to combat representation drift. Beyond 
localization, loop closure allows the robot to represent the 
topology of the environment, instead of simply a record of 
where it has been. 

In passive approaches, a robot performs SLAM with 
sensor information provided to it. For instance a lidar sen- 
sor collects data while driving down a road. In contrast, 
active SLAM leverages the actions of the robot to seek out 
informative measurements that efficiently decrease local- 
ization and mapping uncertainty. Figure 9 illustrates the 
flow of information in passive  versus  active  SLAM.  Ac- 
tive SLAM generates controls based on the current state 
of both the map estimate and robot states. The review 
paper [179] summarizes methods that have been employed 
in the development of active SLAM including the theory 
of optimal experimental design [239], information theoretic 
approaches [240–242] and control theoretic approaches [243, 
244]. Active SLAM can also be formulated as  a  Par- 
tially Observable MDP  (POMDP)  and  approximated  us- 
ing Bayesian optimization or Gaussian belief propagation 
to attain computational tractability. Belief space planning 
entails planning in the space of probabilistic estimates of a 
robot’s state and additional variables of interest [245, 246]. 
This method has also been used in combination with nav- 
igation error [247–249]. 

Using planning algorithms in SLAM is challenging be- 
cause SLAM is generally executed on a pre-planned tra- 
jectory. This trajectory can greatly affect the quality of 
performance. Conversely, path planning algorithms typ- 
ically assume a given map.  Hence,  planning  and  SLAM 
are nontrivially interdependent.   Work in [250] attempts 
to integrate SLAM with a coverage path planning problem 
by developing a movement strategy they call perception- 
driven navigation. The authors use a cost function that 
weights navigation uncertainty, evaluated using the Fisher 
information matrix described in Section  4,  with  the  ra- 
tio of unexplored to total coverage area. This  method 
plans paths between waypoints that are selected based on 
a measure of visual saliency, prioritizing areas in which 
notable environmental features have been detected. The 
integration of perception based navigation in the SLAM 
framework is key to balancing effective mapping alongside 
exploration as the distribution of features in an environ- 
ment is often highly uneven. It also allows for operating 
in limited field of view environments, such as underwater 
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Figure 9: SLAM versus Active SLAM: Active SLAM uses control commands generated to decrease localization and mapping uncertainty. 
In traditional SLAM, the control signal is given in the problem statement. 

 
inspection tasks. 

Developing a method to determine informative features 
from images is an important aspect of visual  SLAM,  in 
which SLAM is performed using only camera inputs [251]. 
Image pre-processing with feature selection reduces the 
computational burden of scanning all the pixels in images, 
leading to many active feature selection algorithms [252]. 
One can also selectively process informative regions of im- 
ages or videos using a recurrent neural network [253]. Lastly, 
visual-inertial navigation—where a robot must estimate its 
state using only a camera and inertial sensors—can sup- 
plement the visual SLAM process. In [254] visual-inertial 
navigation selects features based on the state of the ob- 
server and the context of the scene, using information the- 
oretic constructions as a basis for prioritizing features to 
be used in state estimation. 

 

6.4. Imitation Learning 

Imitation learning is a widely used and effective method 
of imparting human skills to robots by learning desired be- 
haviors from demonstrations. To transfer knowledge about 
a task through imitation, it is important to capture salient 
features of a demonstration in efficient and generalizable 
representations of a skill.   Here,  active learning can play 
an important role in capturing knowledge from a demon- 
stration. 

The field of imitation  learning  is  expansive  [255–257] 
and has been used in numerous settings including autonomous 
driving [258], virtual games [259], and replicating human 
motion in robots [260]. Capturing knowledge about a task 
from human experts is especially applicable to robotics, 
where autonomous systems are charged with operating in 
complex and unstructured environments. In  these  situa- 
tions it can be difficult to manually program specific be- 
haviors and engineer reward functions to suit a task. Imi- 
tation learning is commonly tied to deep neural networks 
to take state/action pairs from demonstrations and learn 
a policy for a skill. This can often require large amounts of 
data, leading to questions about what aspects of demon- 

strations are particularly useful to impart a skill to an 
autonomous system. 

When transferring skills from a human operator to a 
robot, active learning occurs when a human operator is 
queried for information. For instance, work in [261] con- 
siders two approaches to active learning from demonstra- 
tion in the context of autonomous navigation. A learner, 
such as a robot, selects expert demonstrations that they 
believe to be informative based on either novelty or uncer- 
tainty reduction criteria. In novelty management, demon- 
strations are selected based on a density model from which 
a test feature vector can be compared to demonstrations 
previously seen in training to provide exposure to un- 
observed or anomalous data. For uncertainty reduction 
based active learning, the authors used the Query Bag- 
ging Method [262], in which training data is partitioned 
into multiple subsets. A demonstration would be deemed 
to have high uncertainty if the variance over these subsets 
for the demonstration was high. 

Inverse reinforcement learning (IRL), also called in- 
verse optimal control, is a method of determining the goals 
of desired behavior from trajectories executing a policy [263]. 
The aim of IRL is to find a reward function that describes 
the desired task from expert demonstrations. When a task 
is well suited to be described by a single reward function, 
IRL is most applicable. However, a policy may be optimal 
for multiple reward functions, making it difficult to discern 
intent. In response, it may be necessary to include other 
objectives. Work in [264, 265] focuses on active learning in 
the context of IRL, which seeks to reduce the demonstra- 
tions from full trajectories to particularly useful states. In 
this case, active learning means selecting particularly in- 
formative samples to be labeled by an oracle. In [264], a 
robot learns a reward function and movement policy for 
a grasping  task.  The  reward  function  is  in  the  form  of 
a Gaussian process model and is based on human evalu- 
ations of the quality of the grasp. In this method, the 
learning agent is able to impact the demonstrations it sees 
by choosing to query human expert ratings based on acqui- 



 

Dogo Rangsang Research Journal                                                        UGC Care Group I Journal 

ISSN : 2347-7180                                                                           Vol-12 Issue-06 No. 01 June 2022 

Page | 386                                                                                            Copyright @ 2022 Authors 

sition functions from the Bayesian optimization literature. 
Generative adversarial imitation learning (GAIL) is a 

model-free imitation learning approach that scales well to 
high dimensional environments [266]. Inspired by genera- 
tive adversarial networks, GAIL produces behaviors sim- 
ilar to demonstrated behaviors while training a discrimi- 
nator to differentiate expert attempts with generated at- 
tempts. An extension of GAIL, called InfoGAIL, attempts 
to find latent structure across human demonstrations— 
that can be highly variable—to describe interpretable con- 
cepts [267]. Related to techniques that train a discrim- 

inator to differentiate between expert and learned poli- 
cies(such as InfoGAN [268]), InfoGAIL approximately max- 
imizes mutual information between latent space and tra- 
jectories to deduce meaningful latent variables.  In  this 
way, it is possible to produce semantically meaningful or 
informative data that pertains to a particular task. 

Imitation learning, and the other applications men- 
tioned above, stand to benefit from robots that physically 
manipulate when and how they learn, rather than relying 
on visual and aural requests for more or better data, which 
is one of the principal goals of active learning in robotics. 

 
7. Open Challenges 

Closed-loop active learning presents a key opportunity 
for improving the quality and rate of learning. In this sec- 
tion, we focus on specific challenges in both the near and 
far term, such as safety and distributability. These chal- 

While independent robots can easily coordinate to col- 
lect measurements and effectively augment their percep- 
tion [271], learning collectively may prove to be much more 
challenging for a variety of reasons. For one, when robots 
are not just collecting data but also using it to learn as a 
group, they must be in constant communication and shar- 
ing data samples with one another. Another important 
challenge is that the data samples that each agent is lo- 
cally exposed to may be statistically distinct.  Moreover, 
the noise and disturbances that robots are exposed to may 
be heterogenous across agents as well. Taken together, 
these observations suggest that during distributed learning 
the samples that a swarm collects may not be independent 
and identically distributed, which is a key assumption un- 
derlying most learning methods and can create issues with 
fundamental properties of the learning process (e.g., con- 
vergence). Most of the difficulties outlined so far have 
been described by the fields of distributed [272] and fed- 
erated [273] machine learning. Hence, the success of dis- 
tributed active learning is in part tied to the challenges of 
distributed learning generally. 

Nonetheless, some challenges in distributability will be 
unique to active learning.   As we have discussed,  when 
the dynamics of robotic agents are left uncoupled making 
control decisions may be simple. However, active learning 
in robotics precisely requires a coupling between learning 
and taking actions. Then, when agents share a common 
distributed learning objective, their dynamics may become 
effectively coupled through the contingent relationship be- 

lenges are specific to the expertise of the controls community— tween acting and learning. As a best-case scenario, this 

e.g., analyzing properties like complexity, convergence, and 
motion feasibility. We end with a broader discussion of 
questions such as how can one assess the sufficiency of a 
learning model for a given task? These challenges, among 
others that we may not yet understand, are at the core 
of what it means to construct a robotic theory of active 
learning. 

 

7.1. Distributability 

Distributability has become a widely studied and often 
implemented goal for control systems,  enabling a swarm 
of robots to accomplish what an individual robot cannot. 
In the context of control-driven tasks such as exploration 
or search, the benefits of distributability are immediately 
apparent—multiple robots will be able to cover an area 
more efficiently than a single robot could. Distributed data 
collection of this kind has been widely and successfully ap- 
plied in a variety of contexts, such as environmental moni- 
toring [236, 269]. The key feature underlying the success of 
these distributed control applications is that the dynamics 
of the robot collective are factorable into a block-diagonal 
representation—the dynamics of each robot agent are in- 
dependent from one another [214, 270]. However, can we 
expect this to be the case across active learning applica- 
tions? 

can lead to redundant data collection and learning, but 
in the worst-case this can create stability issues in the 
learning process. Highly-coupled dynamics, along with 
extended network dropouts, will generate high degrees of 
disagreement between agents, making both analysis and 
prediction more difficult. Thus, eliciting useful collective 
behavior from decentralized systems based on local deci- 
sions is still an open challenge. 

 

7.2. Safe Active Learning 

Safety is a problem of both specification and prediction— 
one needs to specify what is meant by safety and be able 
to predict that the specification will be satisfied. Imposing 
safety enables learning in high-consequence environments 
with continuous deployment, making reliance on models 
and prior experience less risky. 

Common tools available for imposing safety constraints 
often depend on Control Lyapunov Functions (CLFs) [274, 
275]. These control approaches enforce stability properties 
of a robotic system through a feedback stabilizing control 
law that drives a positive-definite differentiable function 
to zero over time. In the context of active learning, one 
may desire to have a CLF for ergodic control, using the 
ergodic metric as the candidate Lyapunov function [216]. 
One can use Control Barrier Functions (CBFs) [276–278] 
that encode safety constraints, such as in Figure 10 where 
we impose the constraint that one set of vehicles can only 
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Figure  10:  Safe   decentralized   ergodic   control:  Upper   panel: 
Fire trucks attempt to reach the site of a fire guided by helicopters 
above. The firetrucks are able to explore in the areas that have 
already been explore by the helicopters. At the same time, the he- 
licopters must maintain the ability to return to a refueling station. 
Lower panel: Here are three time snapshots of an ensemble of six 
robots—three purple and three blue—explore an environment sub- 
ject to the condition that blue robots can only go some place purple 
robots have already visited. The purple robots are tasked with ex- 
ploring the purple building while the blue robots are tasked with 
exploring the blue building. 

 

 

enter a region after another set of vehicles has explored 
it. Both CLFs and CBFs can be combined with other ob- 
jective functions that are task-oriented rather than safety 
oriented; these often then involve solving quadratic pro- 
grams to satisfy safety constraints [275, 277, 279, 280]. 
The CLF/CBF approach is the most amenable to compu- 
tation in high dimensional spaces, but in lower dimensional 
spaces one can directly solve for safety sets using reachabil- 
ity analysis, which depends on solving a Hamilton-Jacobi- 
Isaacs partial differential equation [281, 282]. Though not 
necessarily practical for high dimensional systems, this 
guarantees an optimal trade-off between safety and per- 
formance. 

An important challenge in these safe learning tech- 
niques is that they are model-based. They require a model 
to evaluate the monotonic decrease of the CLFs/CBFs or 
to evaluate reachability conditions. Since a robot will typ- 
ically be learning something about the environment rel- 
evant to its evolution, its own dynamics, or its interac- 
tions with the environment, all these techniques will rely 
on model updates of some form along with real-time up- 
dates to statistical analysis. A key question is how should 
a robot stay safe during this process, and what should 
safety mean when representations critical to safety are not 
known? 

In recent work—following the CLF/CBF viewpoint of 
safety—we showed that one can use hybrid control meth- 
ods to schedule switching between a safe controller and 

a learning controller, while maintaining the asymptotic 
properties of the safe controller [283]. The critical assump- 
tion in that work is that there is an operating point where 
stability of the robot-environment combination is already 
established and using the safety of that state as a start- 
ing point for safe learning. This is often a reasonable as- 
sumption; for instance, one might have an empirically safe 
PID controller for a humanoid robot near upright posture 
without having model-based safety analysis. Additionally, 
CBFs have been used to guide the learning process in re- 
inforcement learning [284]. In this work, the CBFs restrict 
exploration to safe policies and become less conservative 
as an online learning process learns a model of the dynam- 
ical system. This makes the learning process more efficient 
while guaranteeing safety. This method incorporates on- 
line measurements to improve the CBF-RL controller, pro- 
viding an opportunity for active learning approaches such 
as those discussed here to facilitate information gathering. 
Other approaches to simultaneously satisfying safety guar- 
antees with a priori unknown dynamics and/or unknown 
environments need control formalisms that enforce safety 
criteria in the absence of any certainty. 

 

7.3. Stability, Invariance, and Specification 

Another concern critical to learning is how to impose 
prior knowledge on learned models. Particularly in the 
context of physical learning, where a model does not need 
to be an ordinary differential equation or a statistical pat- 
tern, but can instead be a principle (such as a motion 
symmetry [285] or energetic dissipation). Among these 
principled statements of modeling assumptions, stability, 
the property that the unforced system asymptotically con- 
verges to an equilibrium, may be the most common prop- 
erty in a physical system that we may wish to insist upon [286]. 
In [287]—following [81, 288–292]—we used recent results 
in linear algebra to project linear operators (such as the 
Koopman representations discussed earlier) onto the clos- 
est stable linear operators. Moreover, in [293] we applied 
these techniques to robotic manipulation examples, where 
notably the experiments were implausible without con- 
straining the learning to stable models. 

There is a wide range of potential specifications one 
may wish to impose on a learning system. How would one 
specify that a learned model must satisfy a linear tempo- 
ral logic (LTL) constraint such as those described in [294]? 
What about symmetries in time and space, implying con- 
servation of energy and momentum? Developing formally 
correct methods for combining learning tools with these 
specifications is a key step forward towards robot learn- 
ing under user-generated constraints on what should be 
learned. 

 

7.4. Actionable Learning 

A key property of linear control systems is the sep- 
aration principle. This principle asserts that an optimal 
estimator can be designed independently from the optimal 
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control. A consequence of the separation principle is that 
as soon as a measurement has been taken, one knows that 
the automation system can start to productively take ac- 
tions. That is, every measurement is actionable for the 
control system. A generalization of the separation princi- 
ple is to ask whether designing a learning algorithm can be 
done independently from designing its control system. In 
general, this review assumes that this is not possible—the 
learning and control goals are mutually dependent. How- 
ever, in some learning cases the relationship between what 
is being learned and when or how soon one can take ac- 
tion may be important. For instance, in the case of shape 
recognition in Figure 2, exploring an object to determine 
its shape properties must happen prior to exploring an 
unknown environment in search of that shape. This tran- 
sition is an example of the representation (in this case the 
abstraction’s “shape”) becoming actionable to the control 
system. As far as the authors are aware, this topic is little 
studied in control, but has a long history in psychological 
study of decision making (e.g., see the many books on this 
topic by Alain Berthoz [295]). 

When a control system becomes actionable is particu- 
larly important when distinguishing between active learn- 
ing and passive learning. During the active learning phase, 
learning may be the primary goal of the control system. 
During the passive learning phase the robotic system (or 
animal) may transition to attempting its ultimate  task 
while continuing to run online passive learning updates. 
In single-shot learning, where the learner only has one tra- 
jectory to exploit for the purpose of learning, being able 
to robustly detect when learning has become sufficient to 
take action is a critical part of the path to task success. 

Analysis methods are needed for describing conditions 
under which learned models are sufficient for making a de- 
cision to combine the estimation aspects of learning with 
the control aspects of learning. This transition is often 
characterized in terms of exploration/exploitation trade- 
offs [296] in the context of sampling-based learning. In the 
context of a physical system, exploration and exploitation 
depend on the physics of the learner and environment, 
and the transition between them will be regulated by the 
control system. In the case of the example in Figure 3, 
this would be a safety-critical decision—devoting inade- 
quate time for active learning yields an insufficient model 
for recovery prior to the vehicle hitting the ground, while 
engaging in active learning too long will lead to a catas- 
trophic failure. This particular example would likely yield 
a convex function that represents safety as a function of 
transition time.  However, how to analyze and compute 
this transition in general is unknown. 

Efficiently forming representations relevant to task com- 
pletion is part of the challenge in forming actionable rep- 
resentations. When a representation becomes actionable, 
we capture particular elements of the underlying object or 
task relevant for decision making while ignoring irrelevant 
sensory data. The question of determining functionally 
applicable representations has been explored in [297]. The 

authors claim that the structure of the environment can 
be modeled with a known goal-conditioned policy—a pol- 
icy that can achieve a goal state from a given state. The 
authors refine this policy by differentiating states using 
the actions necessary to reach them. Thus, states that are 
functionally similar are closer to each other in the represen- 
tation than they would be when representing their location 
with an Euclidean distance. This method could  benefit 
from active learning. For instance, one may use the en- 
tropy of the representation rather than the entropy of the 
input or entropy of the physical states, as the information 
quantity to force active learning capabilities. However one 
constructs representations from data-driven experience, an 
important question will be how to synthesize active learn- 
ing to close the loop on representation generation. 

 
8. Conclusion 

Active learning and data-driven control will play a ma- 
jor role in future robotic systems operating without ac- 
cess to reliable analytic models or prior data sets in un- 
certain environments. Robots will need to become fluent 
learners—routinely investing time and energy in single- 
shot learning through purposeful data collection and inter- 
pretation. This high level goal transcends the capabilities 
currently available for robotics in machine learning,  both 
in terms of specifying behavior and representing learning 
goals. Machine intelligence in general has almost entirely 
been viewed as an extension of estimation theory, focus- 
ing on the processing of data. Even reinforcement learning 
assumes that the data needed for updating a policy is avail- 
able or that it can be created in simulation. Here we view 
learning, in part, as an extension of control theory, focus- 
ing on how decisions impact learning outcomes. Before 
these two views can be synthesized into a single coherent 
theory, many challenges need to be addressed including 
those mentioned earlier and many not yet understood. 

Expanding our notion of a model  becomes a key ef- 
fort moving forward. Models should no longer be solely 
defined by an ordinary differential equation, though or- 
dinary differential equations may still play critical roles 
during analysis and computation. Instead, a theme in this 
review is that model-based reasoning needs to admit any 
set of meta-principles one asserts, such as symmetries in 
the system, its stability properties, what equilibria are ex- 
pected, or its logical structure. These assertions will con- 
strain numerical inference, thereby improving learning by 
reducing the classes of admissible models. 

We have outlined and argued for the development of 
a theory of robot learning—one that deals with the dif- 
ficulties and constraints that an embodied learning agent 
would face in the physical world. While much of machine 
learning has neglected the challenges that physical embod- 
iment brings, this presents a great opportunity for control 
theorists at-large. The historical arc of robot control has 
retained a clear focus on the physical properties that en- 
sure safe, robust, and reliable performance. By merging 
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our understanding of controllability, stability, and compli- 
ance, with the flexibility of black-box learning, an action- 
oriented theory of learning will be key to enable future 
robot technologies. 

. 
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[49] S. Ben-David, P. Hrubeš, S. Moran, A. Shpilka, A. Yehudayoff, 
Learnability can be undecidable, Nature Machine Intelligence 
1 (1) (2019) 44–48. 

[50] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, Oc- 
cam’s razor, Information Processing Letters 24 (6) (1987) 377– 
380. 

[51] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, 
Learnability and the Vapnik-Chervonenkis dimension, Journal 
of the ACM 36 (4) (1989) 929–965. 

[52] S. B. Cooper, Computability Theory, CRC Press, 2003. 
[53] D. Angluin, Inference of reversible languages, Journal of the 

ACM 29 (3) (1982) 741–765. 
[54] L. Nocks, The Robot: The Life Story of a Technology, Green- 

wood Technographies, Greenwood Press, 2007. 
[55] D. Angluin,  Queries  and  concept  learning,  Machine  Learning 

2 (4) (1988) 319–342. 
[56] D. A. Cohn, Z. Ghahramani, M. I. Jordan, Active learning with 

statistical models, Journal of Artificial Intelligence Research 4 
(1996) 129–145. 

[57] M.-F. F. Balcan, V. Feldman, Statistical active learning algo- 
rithms, in: Advances in Neural Information Processing Sys- 
tems (NeurIPS), Vol. 26, 2013. 

[58] M. Balcan, S. Hanneke, J. W. Vaughan, The true sample com- 
plexity of active learning, Machine Learning 80 (2) (2010) 111– 
139. 

[59] J. B. Watson, Psychology as the behaviorist views it, Psycho- 
logical Review 20 (2) (1913) 158–177. 

[60] B. F. Skinner, The Behavior of Organisms: An Experimental 
Analysis, Appleton-Century-Crofts, 1938. 

[61] A. G. Barto, R. S. Sutton, P. S. Brouwer, Associative search 
network: A reinforcement learning associative memory, Bio- 
logical cybernetics 40 (3) (1981) 201–211. 

[62] R. S. Sutton, A. G. Barto, Toward a modern theory of adaptive 
networks: Expectation and prediction, Psychological Review 
88 (2) (1981) 135–170. 

[63] A. G. Barto, R. S. Sutton, C. W. Anderson, Neuronlike adap- 
tive elements that can solve difficult learning control problems, 
IEEE Transactions on Systems, Man, and Cybernetics SMC- 
13 (5) (1983) 834–846. 

[64] R. Bellman, Dynamic programming, Science 153 (3731) (1966) 
34–37. 

[65] R. S. Sutton, A. G. Barto, R. J. Williams, Reinforcement learn- 
ing is direct adaptive optimal control, IEEE Control Systems 
Magazine 12 (2) (1992) 19–22. 

[66] E. L. Thorndike, The law of effect, The American Journal of 
Psychology 39 (1) (1927) 212–222. 

[67] R. S. Sutton, A. G. Barto, Reinforcement learning: An intro- 
duction, MIT press, 2018. 

[68] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, 
Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep 
reinforcement learning., in: Proceedings of the International 
Conference on Learning Representations (ICLR), 2016. 

[69] Y. Duan, X. Chen, R. Houthooft, J. Schulman, P. Abbeel, 
Benchmarking deep reinforcement learning for continuous con- 
trol, in: Proceedings of the International Conference on Ma- 
chine Learning (ICML), Vol. 48, 2016, pp. 1329–1338. 

[70] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement 
learning for robotic manipulation with asynchronous off-policy 
updates, in: IEEE International Conference on Robotics and 
Automation (ICRA), IEEE, 2017, pp. 3389–3396. 

[71] L. P. Kaelbling, The foundation of efficient robot learning, Sci- 
ence 369 (6506) (2020) 915–916. 

[72] J. Ibarz,  J.  Tan,  C.  Finn,  M.  Kalakrishnan,  P.  Pastor, 
S. Levine, How to train your robot with deep reinforcement 
learning: lessons we have learned, The International Journal 
of Robotics Research (2021). 

[73] N.  Sünderhauf,  O.  Brock,  W.  Scheirer,  R.  Hadsell,  D.  Fox, 

J.  Leitner,  B.  Upcroft,  P.  Abbeel,  W.  Burgard,  M.  Mil- 
ford, P. Corke, The limits and potentials of deep learning for 
robotics, The International Journal of Robotics Research 37 (4- 
5) (2018) 405–420. 

[74] T. Haarnoja, H. Tang, P. Abbeel, S. Levine, Reinforcement 
learning with deep energy-based policies, in: Proceedings of 
the International Conference on Machine Learning (ICML), 
Vol. 70, 2017, pp. 1352–1361. 

[75] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: 
Off-policy maximum entropy deep reinforcement learning with 
a stochastic actor, in: Proceedings of the International Con- 
ference on Machine Learning (ICML), Vol. 80, 2018, pp. 1861– 
1870. 

[76] B. Eysenbach, S. Levine, Maximum entropy RL (provably) 
solves some robust RL problems (2021). 

[77] X. B. Peng, M. Andrychowicz, W. Zaremba, P. Abbeel, Sim- 
to-real transfer of robotic control with dynamics randomiza- 
tion, in: 2018 IEEE International Conference on Robotics and 
Automation (ICRA), IEEE, 2018, pp. 3803–3810. 

[78] A.  A.  Rusu,  M.  Večeŕık,  T.  Rothörl,  N.  Heess,  R.  Pascanu, 
R. Hadsell, Sim-to-real robot learning from pixels with pro- 
gressive nets, in: Proceedings of the 1st Annual Conference on 
Robot Learning, Vol. 78 of Proceedings of Machine Learning 
Research, PMLR, 2017, pp. 262–270. 

[79] S. James, P. Wohlhart,  M. Kalakrishnan,  D. Kalashnikov, 
A. Irpan, J. Ibarz, S. Levine, R. Hadsell, K. Bousmalis, Sim-
to-real via sim-to-sim: Data-efficient robotic grasping via 
randomized-to-canonical adaptation networks, in: Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2019. 
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[238] V.  Garćıa-Garrido,  A.  Mancho,  S.  Wiggins,  C.  Mendoza,  A 
dynamical systems approach to the surface search for debris 
associated with the disappearance of flight MH370, Nonlin. 
Processes Geophys 22 (2015) 701–712. 
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