
Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 193 Copyright @ 2020 Authors

A Survey on Software Defect Prediction Using Deep Learning

submitted by: Jharana Adhikari,Asst. Prof. in Raajdhani Engineering

College,Bhubaneswar

Jhalaka Hota, Asst.Prof.in Aryan Institute of Engineering and Technology, Bhubaneswar

Rahul Ray, Asst.Prof. in NM Institute of Engineering And Technology, Bhubaneswar

Ipsit Joshi, Asst.Prof In Capital Engineering College, Bhubaneswar.

Abstract: Defect prediction is one of the key demanding situations in software program improvement and programming

language studies for enhancing software program high-satisfactory and reliability. The trouble on this place is to well pick

out the faulty supply code with excessive accuracy. Developing a fault prediction version is a difficult trouble, and plenty

of procedures were proposed during history. The current step forward in system gaining knowledge of technologies, mainly

the improvement of deep gaining knowledge of strategies, has caused many troubles being solved with the aid of using

those techniques. Our survey makes a speciality of the deep gaining knowledge of strategies for disorder prediction. We

examine the current works at the topic, take a look at the techniques for automated gaining knowledge of of the semantic

and structural functions from the code, talk the open troubles and gift the current traits withinside the field.

Introduction

According to the IEEE Standard Classification for Software Anomalies [1], a software defect is “an imperfection or

deficiency in a work product where that work product does not meet its requirements or specifications and needs to be

either repaired or replaced”.

Software defects can cause different problems. Common ways to find software defects are manual testing and code

review. The main drawback of these methods is that they are quite expensive in terms of time and effort. The automatic

approaches to the Software Defect Prediction (SDP) would allow one to reduce the costs and improve quality of the software

projects.

Thus, Software Defect Prediction is an important problem in the fields of the software engineering and programming

language research. The task is to identify the defective code with high accuracy (in terms of the precision and recall).

The development and breakthrough of machine learning led to the fact that many tasks can be solved by the these

methods.

Recent advances in the fields of artificial neural networks and machine learning, as well as the increasing power of the

modern computers (such as supercomputers based on GPUs with AI accelerating modules), allowed new concepts, such as

deep learning, to emerge. The main idea is that an artificial neural network with multiple layers is capable of progressively

extracting the higher-level features from the original data to solve complex problems.

For the problem of software defect prediction, the researchers have proposed the repre- sentation-learning algorithms

to learn semantic representations of programs automatically and use this representation to identify the defect-prone code.

Using these implicit features shows better results than the previous approaches based on the explicit features, such as the

code metrics [2].

The software defect prediction is a rapidly developing field, and the state-of-the-art surveys on the topic [3–5] do not

sufficiently cover the recent works describing the cutting- edge techniques. For example, recent advances in the related fields

of Natural Language Processing (NLP) provided new powerful tools such as Transformer language models. These techniques

were later successfully applied to the software engineering tasks.

The goal of our survey is to describe these latest achievements taking into account the newest primary studies published

in 2019–2021. We hope that this survey can be useful for researchers and practitioners in the software defect prediction, code

understanding and other related fields.

Some semantic defects are hard to find using only source code. For example, in [6], the bytecode of Kotlin programs is

processed to detect the so called compiler-induced anomalies, which arise only in the compiled bytecode. Another example is

presented in [7] where to expose the program behavior, the assembly code (generated from the C source code by the compiler)

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 194 Copyright @ 2020 Authors

is used to learn the defect features.

Nevertheless, the source code remains the main source of data for the defect prediction. In this survey, our main interest

lies in techniques devoted to analyzing the source code. Usually, the process of developing the model for the defect prediction

consists of the following steps (see Figure 1):

1. Prepare the dataset by collecting the source code samples from repositories of the software projects (or choose the suitable

existing dataset).

2. Extract features from the source code.

3. Train the model using the train dataset.

4. Test the model using the test dataset and assess the performance using the quality metrics.

Figure 1. Scheme of the the process of constructing the defect prediction model.

The survey is structured as follows: Section 2 briefly describes the methodology of our survey. Section 3 presents the

overview on the various deep learning techniques applied to the defect prediction. In Section 4, we outline the main difficulties

of the problem. Section 5 presents the study of the latest trends in the techniques and methods for defect prediction. Section

6 concludes the study and offers our vision on the future developments on the field.

2. Methodology

We reviewed the primary studies on the subject. In this section, we present details of our methodology.

 Research Questions

To summarize the work of our survey, let us formulate the following research ques- tions:

• RQ1. What deep learning techniques have been applied to software defect prediction?

• RQ2. What are the key factors contributing to the difficulty of the problem?

• RQ3. What are the trends in the primary studies on the use of deep learning for the software defect prediction?

 Literature Search and Inclusion or Exclusion Criteria

To collect related papers, we formulated a search string for Google Scholar and Scopus combining the related keywords

“software engineering”, “deep learning”, and “defect prediction”.

To filter the papers with insufficient content and determine the paper quality, we used the following criteria:

• The paper must describe a technique for automatic feature extraction using deep learning and apply it to the defect prediction

problem.

• The paper length must not be less than six pages.

3. RQ1. What Techniques Have Been Applied to This Problem?

In order to work with the source code, we need to have its representation. On the one hand, this representation should

be simple as a vector, since most machine learning algorithms work with vectors. On the other hand, the representation should

contain all the necessary information. The numerical vector representing the source code is called an “embedding”.

There are different ways to represent the source code. Moreover, we need different granularities for different tasks, for

example, for code completion we need token-level embedding and for function clone detection we need function embedding.

For the software defect prediction problem, various levels of granularity are used, such as sub-system, component, file/class,

method and change (see [8,9] for more info on various code embed- dings).

One way is to create the vector from the hand crafted features. This approach assumes that an expert invents a set of

features and selects best of them (e.g., [10,11]). Usually, these features include the statistical characteristics of code, such as

its size, code complexity, code churn or process metrics.

Another way is to create the numerical vector by processing the source code.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 195 Copyright @ 2020 Authors

One way to represent the code is a sequence of elements. Usually, they are code tokens or characters [12]. The neural

networks based on the sequences are usually trained to predict the subsequent element.

Another approach to build the representation of the source code is the abstract syntax trees (AST) [13]. The nodes of the

tree correspond to the statement and operators, and the leaves represent the operands and values. The tree-based models

are trained to predict the code by generating new nodes taking into account the existing tree structure.

The most common approach to defect prediction is to use some classification algorithm to divide the source code into

two categories: defect code and correct one (e.g., [14]).

However, the approaches based on the hand-crafted features usually do not sufficiently capture the syntax and semantics

of the source code. Most traditional code metrics cannot distinguish code fragments if these fragments have the same structure

and complexity but implement a different functionality. For example, if we switch several lines in the code fragments,

traditional features, such as the number of lines of code, number of function calls and number of tokens, would remain the

same (see [2]). Thus, the semantic information is more important for defect prediction than these metrics.

Modern approaches are usually based on extracting the implicit structural, syntax and semantic feature from the source

code rather than using the explicit hand-crafted ones. The most popular deep learning techniques for software defect

prediction are: Deep Belief Networks (DBN), Convolutional Neural Networks (CNN), Long Short Term Memory

(LSTM), and Transformer architecture.

 Deep Belief Networks

Deep Belief Network [15] generative models are based on a multilevel neural network. This network contains one input

layer, one output layer and multiple hidden layers. The output layer generates a feature vector representing the data fed to

the input layer. Each layer consists of the stochastic nodes. The important feature of the DBN is that the nodes are only

connected to the nodes in the adjacent layers but not to the nodes within the same layer as shown in Figure 2.

Figure 2. Architecture of the Deep Belief Network.

Perhaps one of the first works combining AST with the deep learning is [16]. The au- thors propose the approach for

software defect prediction on a changes level. The DBN (which is fed by the traditional code metrics) generates the new

expressive features and use them in classical machine learning classifiers. They extract the relations from the tradi- tional

code metrics, such as number of modified modules, directories and files, added and deleted lines, and several features related

to the developer’s experience. Later, the authors proposed the “TLEL” approach [17] based on the decision tree and ensemble

learning for classification.

The works of Wang et al. [2,18] also use the DBN, but in a different manner. For predicting the defects on the basis of the

code semantics, the authors have developed a DBN to automatically learn a semantic features from the source code. As the

input for the network, the programs’ AST and source code changes are used for the cases of file-level and change-level

prediction, respectively. Then, the authors use the classical machine learning classifiers and extracted features to classify

source code files whether they are buggy or clean.

The main drawback of the DBN is that it does not sufficiently capture the context of the code elements, such as the order

of statement execution and function calls.

 Long Short Term Memory

The Long Short Term Memory [19] is a subtype of the recurrent neural network specialized for processing the data

sequences. The LSTM network consists of LSTM units (see Figure 3). The key element of the unit is a memory cell, which

allows the unit to store the values for a short, as well as, for a long time intervals. This provides the LSTM-based models the

ability to capture the long-range context information from the source code.

The LSTM-based model was used in work [11] for learning both the semantic and syntactic features of code. The

proposed approach represents the code as a sequence of code tokens, which is fed into a LSTM system to transform code into

a feature vector and a token state representing the semantic information of the token. Later the Tree-LSTM model was

developed using the AST representation as input [20].

A neural bug finding technique is proposed in [21]. The authors train a neural network on examples of the defective and

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 196 Copyright @ 2020 Authors

correct code, and then use the resulting binary classifier for bug detection. To prepare a labeled dataset, the authors use the

existing static bug detection software to identify the specific kind of bugs. The code is represented as a tokens sequence and

converted to a real-value vector by using the one-hot encoding for each token. Then, a bi-directional network with LSTM is

used as model.

Figure 3. Scheme of the LSTM unit.

In [22], the authors propose a model for defect prediction on the base of AST path pair representation. To process the

code, the path in the AST is extracted as combination of symbol sequence and control sequence. These sequences are fed to a

Bi-LSTM network to generate a path vector. Then, all the vectors are combined using the global attention technique to

generate the vector for the entire code fragment. These final embedding representations are used for classification.

 Convolutional Neural Networks

The Convolutional Neural Networks [23] are a type of neural network specialized for processing the data with a mesh-

like structure. This network is characterized by two important features. Firstly, the local connection pattern between the units

is repeated over the entire network. It allows the network to capture the short-term structural context of the source code.

Secondly, the each unit have the same parameters. It allows the network to learn the information on the code element

irrespective of its position in the code. The scheme of general CNN is shown in Figure 4.

Figure 4. Architecture of the Convolutional Neural Network.

Reference [24] presents the model based on the CNN architecture. Based on the program’s AST, the token vectors are

extracted and converted to numerical vectors. Then, these vectors are fed into a CNN. After that, the combination of the

extracted semantic and structural features and code metrics is used for software defect prediction applying the logistic

regression.

A deep learning model to predict defects on the basis of the commit messages and code changes is developed in [25]. This

model is based on the CNN. It uses the convolu- tional network layers for processing the code changes and commit text and

the feature combination layer to fuse these two embedding vectors into a single one.

Another deep learning-based model for defect prediction is proposed in [26]. The train- ing of the neural network utilizes

the triplet loss technique and the weighted cross-entropy loss technique. The random forest is used as a classifier.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 197 Copyright @ 2020 Authors

In [27], the features learning technique based on CNN is proposed. This model extract features from token vectors in the

AST of the code and learns the transferable joint features. Combining these deep-learning-generated features with the hand-

crafted ones allows the model to perform the cross-project defect prediction. Later, the authors propose a new tree- based

convolutional network to perform this task [28]. It uses the tree-based continuous bag-of-word for encoding the AST nodes to

be fed into CNN.

 Transformer Models

Recently, the big success of pre-trained contextual representations in the NLP, for example, [29], led to a rise of attempts

to apply these techniques to source code. Usu- ally, these models are based on the multi-layer Transformer architecture [30]

shown in Figure 5. They are pre-trained using the massive unlabeled corpora of programs with the self-supervised objectives,

such as masking language modeling and next sentence prediction [31,32]. After the pre-training phase, the model can be fine-

tuned for specific tasks using the supervised techniques.

Figure 5. Architecture of the multi-layer transformer.

The authors of [33] state that the approaches based on the traditional complexity metrics are useless since there is no

need for a tool to tell the engineer that longer and more complex code is more defect-prone. The methods of learning features

from the source code do not guarantee capturing semantic and syntactical similarity, and very similar source codes can have

very different features. These features can correlate with defects rather than directly cause them. In contrast, the authors

propose an approach based on the self attention transformer encoder to the semantic defect prediction. The matrix

representing the defectiveness of each token in the fragment is generated. Attention and layer normalization are used as a

regularization technique. The resulting model provides the defect prediction with the semantic highlight of defective code

regions.

The CuBERT model is presented in [31]. The authors use a corpus of Python files from the GitHub to create a benchmark

for evaluating code embeddings on five classification tasks and a program repair task. They train their model and compare it

with various other models including the BiLSTM and Transformer. It is shown that the CuBERT outperforms the baseline

models consistently.

A bimodal language model called CodeBERT is presented in [32]. It is based on the multilayer bidirectional Transformer

neural architecture. To prepare the data, the natural language text is represented as a sequence of words, and the source code

is presented as a sequence of tokens. The output of the CodeBERT model is a contextual vector learned from the natural

language and source code, as well as the aggregated sequence. The resulting model efficiently solves the problems of both

code to the documentation and natural language code search.

Work [34] presents a multi-layer bidirectional transformer architecture GraphCode- BERT, which utilizes three

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 198 Copyright @ 2020 Authors

components as input: the source code, paired comments and data flow graph. Data flow graph represents relations between

variables, for example, where the value of a variable comes from. This allows the model to consider the code structure for code

representation. For pre-training tasks, the traditional masked language model- ing, as well as the edge prediction and node

alignment of data flow graph were used. It supports several downstream code-related tasks including the code clone detection,

code translation and code refinement.

 Other Networks

In [35], a software defect prediction technique based on stacked denoising autoen- coders model is presented. The

stacked denoising autoencoder is used to extract higher- level features from the traditional metrics. The two-stage ensemble

learning is used for classification. To address the class imbalance, the authors use the ensemble learning strat- egy. Later, the

feature selection algorithm was applied to this method to address the feature redundancy problem [36].

A model for the software defect prediction was constructed in work [37] on the base of the Siamese parallel fully-

connected networks. This model utilizes the paired parallel Siamese networks architecture and the deep learning approach.

The network produces the high-level features that are used for classification. To address the imbalance between the

minority and majority classes, the network takes into account the cost-sensitivity features.

The neural forest networks are used to learn feature representations in [38]. To perform a classification, a decision forest

is used. It also guides the learning of the neural network. In [39], a new deep forest model is proposed for the software defect

prediction. To detect the essential defect features, it uses the cascade learning strategy, which consists in reforming a set of

the random forest classifiers into a layered network.

The graph neural network to predict the software defects is constructed in work [40]. It extracts the semantics and

context features from the AST of the code fragments. To capture the defect-related information from the source code, the ASTs

for the buggy and fixed version of a fragment are constructed and pruned using the community detection algorithm, which

extracts the defect-related subtree. Then, the Graph Neural Network is used to capture the latent defect information.

4. RQ2. What Are the Key Factors Contributing to Difficulty of the Problem?

The problem of software defect prediction is considered very complex and very challenging for the machine learning

models based on the neural networks.

 Lack of Data

One of the difficulties is lack of available large labeled datasets devoted to the defect prediction. To alleviate this problem,

one can utilize the pre-trained contextual embed- dings. This technique consists in pre-training the language model on a

massive corpora of unlabeled source code using the self-supervised objectives, such as masked language modeling, next

sentence prediction and replaced token detection.

Table 1 presents the popular unlabeled code datasets suitable for this task.

The pre-trained model may then be fine-tuned for the defect prediction using much smaller labeled datasets. Table 2

presents a list of publicly available datasets devoted to the defect prediction. Usually, such datasets include pairs of correct

and defective code fragments.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 199 Copyright @ 2020 Authors

As with the other factors affecting the difficulty of constructing datasets, we can highlight that the distribution of the

classes in the real code projects is often imbalanced. Usually, there are fewer buggy files or methods in a project than the

correct ones. This may lead to the situation where the common classifiers would correctly detect the major class (correct code)

and ignore the much smaller class of the defect-prone code. This will lead to bad performance of the model.

To address this imbalance, several oversampling methods are proposed. In [62,63], the au- thors constructed hybrid

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 200 Copyright @ 2020 Authors

approaches. It is based on the Synthetic Minority Over-Sampling Technique (SMOTE and SMOTUNED) for preparing the

datasets and ensemble approaches for classifying the defective and correct code. In [22], the authors takes into account the

proportion of the correct and defective code in each project in the dataset. To balance the classes, they duplicate the elements

of the smaller class.

 Lack of Context

Another problem is the complexity of the context for the code. Unlike the natural texts, the code element may depend on

another element located far away, maybe, even in another code fragment. Moreover, it is often hard to say if the code element

is defective without considering its context. If dataset consists of the pairs of bugged and fixed code fragments, it is often hard

to extract the essence of defect.

Approaches based on the Transformer networks were aimed to NLP problems where data display a great deal of locality

of reference. Most information about a token can be derived from its neighboring tokens [64]. Thus, most such models

represent the source code as a sequence of tokens.

The traditional Transformer architectures based on self-attention matrices do not scale well because of quadratic

complexity. Usually, they are designed to handle the input sequences with limited length (usually, 512 or 1024 tokens)

[64,65]. Therefore, their applicability to understanding the context of the source code is limited.

There are several modifications to the Transformer architecture that improve its ability to comprehend long sequences

[66–68]. These approaches alleviate the problem of limited length of the input, giving the Transformers the potential to work

with a complex context of the source code.

Another approach is to capture the structural and global relations on the code, com- bining the sequence-based and

graph-based models for code representation [34,69].

Thus, representing the code context is essential in the software defect prediction.

5. RQ3. What Are the Trends in the Primary Studies on the Use of Deep Learning
for the Software Defect Prediction?

The earliest works, such as [16], utilize the deep learning techniques trying to extract the implicit features from the

traditional explicit features (such as code metrics). The main drawback of this approach is that these traditional features

usually cannot capture the semantic difference between the correct and defective code. Therefore, the combination of these

features would also fail to do this [24].

Later approaches [20,25] use the generic or tailored deep learning techniques to extract the semantic and syntactic

features directly from the source code, usually, from the abstract syntax trees. These deep learned features are used in

combination with the traditional ones in the machine classifiers to produce the accurate defect prediction.

Modern software development often prioritize writing the human-readable source code. This includes using the

meaningful names for the functions and variables and writing the code documentation in natural language. This leads to a

situation where we can extract the semantic information from the source code using the techniques originally intended for

the NLP, such as the pre-trained language representations such as BERT [70].

Learning useful models with supervised setting is often difficult because labeled data are usually limited. Thus, many

unsupervised approaches have been proposed recently to utilize the large unlabeled datasets that are more readily available.

Usually, this means that pre-training is performed with automatic supervisions without manual annotation of the samples.

Then, the model may be fine-tuned for the specific task using much smaller supervised data [31].

The most recent techniques in software engineering are based on using the general- purposed pre-trained models for

programming languages [34,71]. These models learn to “understand” the source code from unlabeled datasets using the self-

supervised objectives. A large corpus of source code is used for pre-training. Usually, the objective is the Masked

Language Modeling where at some positions the tokens are masked out and the model must predict the original token [32].

Utilizing these techniques alleviates the need for the task-specific architectures and training on large labeled datasets for each

task separately.

6. Conclusions

One of the major challenges in modern software engineering is predicting defective code. Recent developments in the

field of machine learning, especially the multi-layered neural networks and deep learning algorithms, provide powerful

techniques, which utilize learning algorithms for representations of the source code that captures semantic and structural

information.

This survey presents the latest research progress in software defect prediction using the deep learning techniques, such

as the Transformer architectures. We formulate the main difficulties of the defect prediction problem as lack of data and

complexity of context and discuss the ways to alleviate these problems.

Taking into account the latest trends in the machine learning techniques for the software defect prediction problem, we

believe that progress in this field will be achieved largely due to the implementation of the following ideas.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 201 Copyright @ 2020 Authors

• To reduce the requirements for the size of the labeled datasets, one should use the self- supervised training on large corpora

of the unlabeled data. In addition, it is necessary to use the unlabeled data for the pre-training of related tasks and to contribute

to the fact that the trained models will have a deeper and more comprehensive understanding of the source code. This, in the

turn, will allow one to find the deeper defects.

• To leverage the latest advances in the machine learning techniques in the natural language processing in the programming

languages, we are already seeing the suc- cessful migration of these methods to solve various code understanding problems.

For example, optimization of the self-attention mechanism for the transformers will allow one to use them for long sequences,

which, in the turn, will lead to a more complete consideration of the code context for finding the defects.

• Often a defect is not limited to a single line of code or one function, and there are various ways to fix it. For example, a bug can

be fixed either inside the function or at calling this function. Thus, the defect ceases to have specific coordinates inside the

source file. In addition, not being an explicit defect, a line of code can become defective at a certain point in time. A changed

context may lead to the fact that the purpose of the code changes, and, therefore, the old implementation no longer

corresponds to the new requirements or specifications.

All this leads to a blurring of the concept of a defect. Thus, we come to the concepts of “potentially defective” code or

“strange” code. In this regard, as promising problems, we want to note the task of finding an atypical (or anomalous) code and

the task of the code refinement. These task require good representations of the code and code changes, taking into account

the specifics of the source code, such as structure and context.

It is difficult to state which of the state-of-the-art models performs in the best way. There are no universally accepted

standard benchmarks for the problem and different researchers utilize different performance metrics and use different data.

Thus, the ex- perimental results from the primary works cannot be directly compared. The existing comparative studies such

as [72] show that while the state-of-the-art deep learning tech- niques usually perform better than standard deep learning

and traditional metrics-based ones (achieving the increase of F1 from 60% up to 80% in some cases). None of the ap- proaches

achieves a consistently high performance in terms of recall, precision and accuracy sufficient for the practical application.

Thus, the defect prediction problem remains an open one.

References
1. Wang, S.; Liu, T.; Tan, L. Automatically Learning Semantic Features for Defect Prediction. In Proceedings of the 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE), Austin, TX, USA, 18–20 May 2016; pp. 297–308. [CrossRef]

2. Omri, S.; Sinz, C. Deep Learning for Software Defect Prediction: A Survey. In Proceedings of the IEEE/ACM 42nd International

Conference on Software Engineering Workshops, ICSEW ’20, Seoul, Korea, 6–11 July 2020; pp. 209–214. [CrossRef]

3. Yang, Y.; Xia, X.; Lo, D.; Grundy, J. A Survey on Deep Learning for Software Engineering. arXiv 2020, arXiv:cs.SE/2011.14597.

4. Shen, Z.; Chen, S. A Survey of Automatic Software Vulnerability Detection, Program Repair, and Defect Prediction Techniques.

Secur. Commun. Netw. 2020, 2020, 8858010. [CrossRef]

5. Bryksin, T.; Petukhov, V.; Alexin, I.; Prikhodko, S.; Shpilman, A.; Kovalenko, V.; Povarov, N. Using Large-Scale Anomaly Detection on

Code to Improve Kotlin Compiler. In Proceedings of the 17th International Conference on Mining Software Repositories, MSR ’20 ,

Seoul, Korea, 29–30 June 2020; pp. 455–465. [CrossRef]

6. Phan, A.V.; Le Nguyen, M. Convolutional neural networks on assembly code for predicting software defects. In Proceedings of the

2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES), Hanoi, Vietnam, 15–17 November 2017; pp. 37–

42. [CrossRef]

7. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv.

2018, 51. [CrossRef]

8. Chen, Z.; Monperrus, M. A Literature Study of Embeddings on Source Code. arXiv 2019, arXiv:cs.LG/1904.03061.
9. Sharmin, S.; Arefin, M.R.; Wadud, M.A.; Nower, N.; Shoyaib, M. SAL: An effective method for software defect prediction. In Proceedings

of the 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December

2015; pp. 184–189. [CrossRef]

10. Dam, H.K.; Tran, T.; Pham, T.; Ng, S.W.; Grundy, J.; Ghose, A. Automatic Feature Learning for Predicting Vulnerable Software

Components. IEEE Trans. Softw. Eng. 2018, 47, 67–85. [CrossRef]

11. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,

arXiv:cs.CL/1301.3781.

12. Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Wang, K.; Liu, X. A Novel Neural Source Code Representation Based on Abstract Syntax Tree.

In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31

May 2019; pp. 783–794. [CrossRef]

13. Pradel, M.; Sen, K. DeepBugs: A Learning Approach to Name-Based Bug Detection. Proc. ACM Program. Lang. 2018, 2. [CrossRef]

14. Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]

15. Yang, X.; Lo, D.; Xia, X.; Zhang, Y.; Sun, J. Deep Learning for Just-in-Time Defect Prediction. In Proceedings of the 2015 IEEE

International Conference on Software Quality, Reliability and Security, Vancouver, BC, Canada, 3–5 August 2015; pp. 17–26.

[CrossRef]

16. Yang, X.; Lo, D.; Xia, X.; Sun, J. TLEL: A two-layer ensemble learning approach for just-in-time defect prediction. Inf. Softw. Technol.

2017, 87, 206–220. [CrossRef]

http://dx.doi.org/10.1145/2884781.2884804
http://dx.doi.org/10.1145/3387940.3391463
http://dx.doi.org/10.1155/2020/8858010
http://dx.doi.org/10.1145/3379597.3387447
http://dx.doi.org/10.1109/IESYS.2017.8233558
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1109/ICCITechn.2015.7488065
http://dx.doi.org/10.1109/TSE.2018.2881961
http://dx.doi.org/10.1109/ICSE.2019.00086
http://dx.doi.org/10.1145/3276517
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1109/QRS.2015.14
http://dx.doi.org/10.1016/j.infsof.2017.03.007

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 202 Copyright @ 2020 Authors

17. Wang, S.; Liu, T.; Nam, J.; Tan, L. Deep Semantic Feature Learning for Software Defect Prediction. IEEE Trans. Softw. Eng. 2018,

46, 1267–1293. [CrossRef]

18. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

19. Dam, H.K.; Pham, T.; Ng, S.W.; Tran, T.; Grundy, J.; Ghose, A.; Kim, T.; Kim, C.J. Lessons Learned from Using a Deep Tree-Based Model

for Software Defect Prediction in Practice. In Proceedings of the 2019 IEEE/ACM 16th International Conference on Mining Software

Repositories (MSR), Montreal, QC, Canada, 25–31 May 2019; pp. 46–57. [CrossRef]

20. Habib, A.; Pradel, M. Neural Bug Finding: A Study of Opportunities and Challenges. arXiv 2019, arXiv:cs.SE/1906.00307.

21. Shi, K.; Lu, Y.; Chang, J.; Wei, Z. PathPair2Vec: An AST path pair-based code representation method for defect prediction. J. Comput.

Lang. 2020, 59, 100979. [CrossRef]

22. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 17 December 2020).

23. Li, J.; He, P.; Zhu, J.; Lyu, M.R. Software Defect Prediction via Convolutional Neural Network. In Proceedings of the 2017 IEEE

International Conference on Software Quality, Reliability and Security (QRS), Prague, Czech Republic, 25–29 July 2017; pp. 318–328.

[CrossRef]

24. Hoang, T.; Khanh Dam, H.; Kamei, Y.; Lo, D.; Ubayashi, N. DeepJIT: An End-to-End Deep Learning Framework for Just-in-Time Defect

Prediction. In Proceedings of the 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), Montreal,

QC, Canada, 25–31 May 2019, pp. 34–45. [CrossRef]

25. Xu, Z.; Li, S.; Xu, J.; Liu, J.; Luo, X.; Zhang, Y.; Zhang, T.; Keung, J.; Tang, Y. LDFR: Learning deep feature representation for software

defect prediction. J. Syst. Softw. 2019, 158, 110402. [CrossRef]

26. Qiu, S.; Lu, L.; Cai, Z.; Jiang, S. Cross-Project Defect Prediction via Transferable Deep Learning-Generated and Handcrafted Features.

In Proceedings of the 31st International Conference on Software Engineering & Knowledge Engineering (SEKE 2019), Lisbon,

Portugal, 10–12 July 2019; pp. 1–6. Available online: http://ksiresearch.org/seke/seke19paper/seke19paper_70.pdf (accessed on

17 December 2020).

27. Cai, Z.; Lu, L.; Qiu, S. An Abstract Syntax Tree Encoding Method for Cross-Project Defect Prediction. IEEE Access 2019,

7, 170844–170853. [CrossRef]

28. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized

BERT Pretraining Approach. arXiv 2019, arXiv:cs.CL/1907.11692.

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:cs.CL/1706.03762.

30. Kanade, A.; Maniatis, P.; Balakrishnan, G.; Shi, K. Learning and Evaluating Contextual Embedding of Source Code. In Proceedings of the

37th International Conference on Machine Learning; Daumé , H., III, Singh, A., Eds.; PMLR: 2020; Volume 119, pp. 5110–5121. Available
online: http://proceedings.mlr.press/v119/kanade20a.html (accessed on 17 December 2020).

31. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained Model for

Programming and Natural Languages. arXiv 2020, arXiv:cs.CL/2002.08155.

32. Humphreys, J.; Dam, H.K. An Explainable Deep Model for Defect Prediction. In Proceedings of the 22019 IEEE/ACM 7th International

Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), Montreal, QC, Canada, 28 May 2019; pp.

49–55. [CrossRef]

33. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT: Pre-training Code

Representations with Data Flow. arXiv 2021, arXiv:cs.SE/2009.08366.

34. Tong, H.; Liu, B.; Wang, S. Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning.

Inf. Softw. Technol. 2018, 96, 94–111. [CrossRef]

35. Tran, H.D.; Hanh, L.T.M.; Binh, N.T. Combining feature selection, feature learning and ensemble learning for software fault prediction.

In Proceedings of the 2019 11th International Conference on Knowledge and Systems Engineering (KSE), Da Nang, Vietnam, 24–26

October 2019; pp. 1–8. [CrossRef]

36. Zhao, L.; Shang, Z.; Zhao, L.; Zhang, T.; Tang, Y.Y. Software defect prediction via cost-sensitive Siamese parallel fully-connected neural

networks. Neurocomputing 2019, 352, 64–74. [CrossRef]

37. Qiu, Y.; Liu, Y.; Liu, A.; Zhu, J.; Xu, J. Automatic Feature Exploration and an Application in Defect Prediction. IEEE Access 2019,

7, 112097–112112. [CrossRef]

38. Zhou, T.; Sun, X.; Xia, X.; Li, B.; Chen, X. Improving defect prediction with deep forest. Inf. Softw. Technol. 2019, 114, 204–216. [CrossRef]

39. Xu, J.; Wang, F.; Ai, J. Defect Prediction With Semantics and Context Features of Codes Based on Graph Representation Learning.

IEEE Trans. Reliab. 2020, 1–13. [CrossRef]

40. Raychev, V.; Bielik, P.; Vechev, M. Probabilistic Model for Code with Decision Trees. SIGPLAN Not. 2016, 51, 731–747. [CrossRef]

41. Raychev, V.; Bielik, P.; Vechev, M.; Krause, A. Learning Programs from Noisy Data. SIGPLAN Not. 2016, 51, 761–774. [CrossRef]

42. Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating Sequences from Structured Representations of Code. arXiv 2019,

arXiv:cs.LG/1808.01400.
43. Allamanis, M.; Sutton, C. Mining source code repositories at massive scale using language modeling. In Proceedings of the 2013 10th

Working Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18–19 May 2013; pp. 207–216. [CrossRef]

44. yer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing source code using a neural attention model. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016; pp.

2073–2083.

45. Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to Represent Programs with Graphs. arXiv 2018, arXiv:cs.LG/1711.00740.

46. Mauša, G.; Galinac-Grbac, T.; Dalbelo-Bašic´, B. A systematic data collection procedure for software defect prediction. Comput. Sci.

Inf. Syst. 2016, 13, 173–197. [CrossRef]

http://dx.doi.org/10.1109/TSE.2018.2877612
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/MSR.2019.00017
http://dx.doi.org/10.1016/j.cola.2020.100979
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://dx.doi.org/10.1109/QRS.2017.42
http://dx.doi.org/10.1109/MSR.2019.00016
http://dx.doi.org/10.1016/j.jss.2019.110402
http://ksiresearch.org/seke/seke19paper/seke19paper_70.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2953696
http://proceedings.mlr.press/v119/kanade20a.html
http://dx.doi.org/10.1109/RAISE.2019.00016
http://dx.doi.org/10.1016/j.infsof.2017.11.008
http://dx.doi.org/10.1109/KSE.2019.8919292
http://dx.doi.org/10.1016/j.neucom.2019.03.076
http://dx.doi.org/10.1109/ACCESS.2019.2934530
http://dx.doi.org/10.1016/j.infsof.2019.07.003
http://dx.doi.org/10.1109/TR.2020.3040191
http://dx.doi.org/10.1145/3022671.2984041
http://dx.doi.org/10.1145/2914770.2837671
http://dx.doi.org/10.1109/MSR.2013.6624029
http://dx.doi.org/10.2298/CSIS141228061M

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-04 No. 01 April 2020

Page | 203 Copyright @ 2020 Authors

47. Sayyad Shirabad, J.; Menzies, T. The PROMISE Repository of Software Engineering Databases; School of Information Technology and

Engineering, University of Ottawa: Ottawa, ON, Canada, 2005. Available online: http://promise.site.uottawa.ca/SERepository/
(accessed on 17 December 2020).

48. Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. NASA MDP Software Defects Data Sets. 2018. Available online: https://figshare.com/

collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1 (accessed on 17 December 2020).

49. Afric, P.; Sikic, L.; Kurdija, A.S.; Silic, M. REPD: Source code defect prediction as anomaly detection. J. Syst. Softw. 2020,

168, 110641. [CrossRef]
50. Ferenc, R.; Gyimesi, P.; Gyimesi, G.; Tóth, Z.; Gyimóthy, T. An automatically created novel bug dataset and its validation in bug

prediction. J. Syst. Softw. 2020, 169, 110691. [CrossRef]

51. Tóth, Z.; Gyimesi, P.; Ferenc, R. A Public Bug Database of GitHub Projects and Its Application in Bug Prediction. In Proceedings of the

Computational Science and Its Applications—ICCSA, Beijing, China, 4–7 July 2016; Springer International Publishing: Cham,

Switzerland, 2016; pp. 625–638. [CrossRef]

52. Ferenc, R.; Tóth, Z.; Ladányi, G.; Siket, I.; Gyimóthy, T. A public unified bug dataset for java and its assessment regarding metrics and

bug prediction. Softw. Qual. J. 2020, 28, 1447–1506. [CrossRef]

53. Tufano, M.; Watson, C.; Bavota, G.; Penta, M.D.; White, M.; Poshyvanyk, D. An Empirical Study on Learning Bug-Fixing Patches in the

Wild via Neural Machine Translation. ACM Trans. Softw. Eng. Methodol. 2019, 28, 1–29. [CrossRef]

54. Widyasari, R.; Sim, S.Q.; Lok, C.; Qi, H.; Phan, J.; Tay, Q.; Tan, C.; Wee, F.; Tan, J.E.; Yieh, Y.; et al. BugsInPy: A database of existing bugs

in Python programs to enable controlled testing and debugging studies. In Proceedings of the ESEC/FSE ’20: 28th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, 8–13 November

2020; Devanbu, P., Cohen, M.B., Zimmermann, T., Eds.; ACM: New York, NY, USA, 2020; pp. 1556–1560. [CrossRef]

55. Russell, R.; Kim, L.; Hamilton, L.; Lazovich, T.; Harer, J.; Ozdemir, O.; Ellingwood, P.; McConley, M. Automated Vulnerability Detection

in Source Code Using Deep Representation Learning. In Proceedings of the 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 757–762. [CrossRef]

56. Hu, Y.; Ahmed, U.Z.; Mechtaev, S.; Leong, B.; Roychoudhury, A. Re-factoring based Program Repair applied to Programming

Assignments. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE),

IEEE/ACM, San Diego, CA, USA, 11–15 November 2019; pp. 388–398. [CrossRef]

57. Just, R.; Jalali, D.; Ernst, M.D. Defects4J: A database of existing faults to enable controlled testing studies for Java programs. In

Proceedings of the 2014 International Symposium on Software Testing and Analysis, San Jose, CA, USA, 21–25 July 2014; pp. 437–

440. [CrossRef]

58. Tomassi, D.A.; Dmeiri, N.; Wang, Y.; Bhowmick, A.; Liu, Y.; Devanbu, P.T.; Vasilescu, B.; Rubio-González, C. BugSwarm: Mining and

Continuously Growing a Dataset of Reproducible Failures and Fixes; ICSE.IEEE/ACM: Montreal, QC, Canada, 2019; pp. 339–349.
[CrossRef]

59. Muvva, S.; Rao, A.E.; Chimalakonda, S. BuGL—A Cross-Language Dataset for Bug Localization. arXiv 2020, arXiv:cs.SE/2004.08846.

60. Saha, R.K.; Lyu, Y.; Lam, W.; Yoshida, H.; Prasad, M.R. Bugs.Jar: A Large-Scale, Diverse Dataset of Real-World Java Bugs. In Proceedings

of the 15th International Conference on Mining Software Repositories (MSR ’18), Gothenburg, Sweden, 28–29 May 2018; Association

for Computing Machinery: New York, NY, USA, 2018; pp. 10–13. [CrossRef]

61. Alsawalqah, H.; Faris, H.; Aljarah, I.; Alnemer, L.; Alhindawi, N. Hybrid SMOTE-Ensemble Approach for Software Defect Prediction. In

Software Engineering Trends and Techniques in Intelligent Systems; Silhavy, R., Silhavy, P., Prokopova, Z., Senkerik, R., Kominkova
Oplatkova, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 355–366.

62. Agrawal, A.; Menzies, T. Is “Better Data” Better than “Better Data Miners”? On the Benefits of Tuning SMOTE for Defect Prediction. In

Proceedings of the 40th International Conference on Software Engineering (ICSE ’18), Gothenburg, Sweden, 27 May–3 June 2018;

Association for Computing Machinery: New York, NY, USA, 2018; pp. 1050–1061, [CrossRef]

63. Tay, Y.; Dehghani, M.; Bahri, D.; Metzler, D. Efficient Transformers: A Survey. arXiv 2020, arXiv:cs.LG/2009.06732.

64. Tay, Y.; Dehghani, M.; Abnar, S.; Shen, Y.; Bahri, D.; Pham, P.; Rao, J.; Yang, L.; Ruder, S.; Metzler, D. Long Range Arena: A Benchmark

for Efficient Transformers. arXiv 2020, arXiv:cs.LG/2011.04006.

65. Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; et al. Big Bird:

Transformers for Longer Sequences. arXiv 2021, arXiv:cs.LG/2007.14062.

66. Fiok, K.; Karwowski, W.; Gutierrez, E.; Davahli, M.R.; Wilamowski, M.; Ahram, T.; Al-Juaid, A.; Zurada, J. Text Guide: Improving the

quality of long text classification by a text selection method based on feature importance. arXiv 2021, arXiv:cs.AI/2104.07225.

67. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The Long-Document Transformer. arXiv 2020, arXiv:cs.CL/2004.05150.

68. Hellendoorn, V.J.; Sutton, C.; Singh, R.; Maniatis, P.; Bieber, D. Global Relational Models of Source Code. In Proceedings of the

International Conference on Learning Representations (ICLR), Virtual Event, 26 April–1 May 2020.

69. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand- ing.

In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June, 2019; Association for Computational

Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [CrossRef]

70. Karampatsis, R.M.; Sutton, C. SCELMo: Source Code Embeddings from Language Models. arXiv 2020, arXiv:cs.SE/2004.13214.

71. Herbold, S.; Trautsch, A.; Grabowski, J. A Comparative Study to Benchmark Cross-Project Defect Prediction Approaches. IEEE Trans.

Softw. Eng. 2018, 44, 811–833. [CrossRef]

http://promise.site.uottawa.ca/SERepository/
https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1
https://figshare.com/collections/NASA_MDP_Software_Defects_Data_Sets/4054940/1
http://dx.doi.org/10.1016/j.jss.2020.110641
http://dx.doi.org/10.1016/j.jss.2020.110691
http://dx.doi.org/10.1007/978-3-319-42089-9_44
http://dx.doi.org/10.1007/s11219-020-09515-0
http://dx.doi.org/10.1145/3340544
http://dx.doi.org/10.1145/3368089.3417943
http://dx.doi.org/10.1109/ICMLA.2018.00120
http://dx.doi.org/10.1109/ASE.2019.00044
http://dx.doi.org/10.1145/2610384.2628055
http://dx.doi.org/10.1109/ICSE.2019.00048
http://dx.doi.org/10.1145/3196398.3196473
http://dx.doi.org/10.1145/3180155.3180197
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1109/TSE.2017.2724538

