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Abstract. Nowadays the application of photovoltaic source in power system is in great demand. Therefore, power 
system is required to maintain the reactive power control with the integration of photovoltaic system. Further the 
transfer energy to the distribution system is a usual case. This main objective is to present a new design for the 
transfer of photovoltaic source to the utility system. The system is based on a push-pull converter attached to a 
three-phase DC/AC inverter. In particular, a great interest is focused on the steady operating conditions of energy 
transfer. For computing the dynamic regime the photovoltaic source is integrated into the grid with maximum 
active power and zero reactive power. To validate the system require simulations are carried out which ensures the 
performance of the system. 

 . 

 
 

1. Introduction 

At present, the large-scale application of distributed photovoltaic (DPV) is one of the major strategic 

measures to alleviate environmental pollution and cope with the energy crisis, and is also an inevitable 

choice for the development of active distribution networks and smart grids. With an increasing 

penetration of DPV in distribution networks, the overvoltages caused by PV reverse currents and the 

stability of grid voltages are becoming more and more serious [1-4]. 

In order to alleviate the voltage control problem, the current research mainly studies from three 

aspects: active power curtailment (APC), reactive power control (RPC) and active and reactive power 

coordination control (A/RC) [5-7]. In terms of APC strategy, overvoltage control is mainly realized by 

active power curtailment; in terms of RPC strategy, the local voltage control is realized by PV 

inverter's reactive power adjustment; for A/RC strategy, reasonable PV active curtail and reactive 

power support is coordinated to improve the performance of PV integration and further increase PV 

hosting capacity of the distribution networks. 

This paper studies the related research and mainstream methods of DPV voltage control by 

combing the existing research [7-11] at home and abroad. It can be explained from three aspects, 

namely 1) PV system local voltage control strategy, 2) coordination voltage control strategy between 

the PV system and distribution network, and 3) other key measures for voltage control such as battery 

energy storage system. The described voltage control strategies and methods reviewed in this paper 

can provide a theoretical basis and practical reference for the development of high-density DPV in 

China. 
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2. Photovoltaic system local voltage control strategy 

 

 Active power curtailment method 
Active power curtailment mainly achieves overvoltage control by means of curtailing excess active 

power. [12-13] studied two active power droop control strategies of grid-connected PV inverters in 

low-voltage distribution systems. The first control strategy makes all PV inverters use the same droop 

coefficient. The second control strategy allows each inverter to adopt different droop control 

coefficients to achieve the average distributed curtailment power of each inverter. An artificial neural 

network (ANN) is modeled in [14] to predict the PV output, and then the inverter can determine the 

active power should be curtailed. And through the historical data training of the ANN prediction 

module, the optimal curtailed power of the inverter under different PV grid-connected point voltage 

conditions can be obtained. 

Although the APC method can effectively suppress the overvoltage phenomenon, it does not fully 

utilize the PV power generation capacity installed in the distribution network. Restricting PV output 

will lead to the occurrence of energy abandonment, and considering reactive power control (RPC) at 

this time is another effective choice. 
 

 Reactive power control method 

In terms of reactive power control, the authors in [15-16] improved the standard Q(V) control to 

location-adaptive Q(V) control. This control strategy takes the inverters different Q(V) control curves 

according to the PV system’s location. The Q(V) control parameters of each inverter are no longer set 

to be the same. The closer to the transformer, the Q(V) control curve is shifted to the left so that the 

inverter energy coefficient close to the transformer is further reduced, and the voltage is increased. Fig. 

1 is a schematic diagram showing changes in the control characteristics of each inverter as a function 

of its installation position. 

Figure 1. Location-adaptive Q(V) control curves for PV inverters 

Reference [17] proposed a novel cosφ(P,U) control method that combines the advantages of cosφ(P) 

and Q(V). Compared with Q(V) control, although it slightly increases the reactive power demand and 

reactive power loss of the whole network, it can greatly increase the PV hosting capacity of the 

distribution network under the condition of allowing the transformer to have a certain overload 

capacity. The multi-agent system (MAS) on the basis of Control Network Protocol (CNP) is proposed 

to control the reactive voltage of the PV system at the feeder level [18]. A decentralized interactive 

control function of the MAS system is utilized to realize the mutual coordination communication of 

each inverter in the feeder and the effect of bidding to achieve stable voltage. 
 

 Active and reactive power coordination control method 

Although the two kinds of APC and RPC voltage control methods described above can effectively 

prevent the voltage from exceeding the limit, the APC method does not guarantee the fairness of each 

PV system; the RPC method requires additional inverter capacity to ensure adequate reactive power 

regulation. Therefore, an active and reactive voltage coordination control has become the focus of 
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research on voltage control [19]. An optimal inverter dispatch (OID) framework is proposed in [20]. 

The optimal power flow determines the active and reactive set points of each inverter and is more 

flexible than the RPC and APC strategies. The overall idea of [21] is the same as [20], but the paper 

extends the OID framework to the distributed DIOD framework. The problem of inverter parameter 

setting based on optimal power flow calculation can be decomposed into two small problems of PV 

system owners for the power grid and resident users, and the problem can be solved by limited 

information interaction. 
 

 Comparative analysis of various control methods 
The advantages and disadvantages of the various voltage control methods described above are 

comprehensively compared and listed below. 

Table 1. Comparison of advantages and disadvantages of each voltage control method. 
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3. Coordination voltage control strategy between the PV system and distribution network 

When the distributed PV penetration reaches a certain level, and the adjustment capability of the 

inverter is difficult to meet the voltage regulation, it is necessary to combine the regulation measures 

(OLTC, VR, SC, etc.) of the original distribution network of the upper layer for coordinated control. 

In [2], it focuses on three types of methods for active distribution network voltage control, namely, 

distributed voltage control, centralized voltage control, and coordinated voltage control. A multi-level 

voltage control framework for active distribution networks is constructed in [7], which is based on 

MV/HV cooperative control and MV/LV two-way control. In [22], the sub-regional cooperative 

control principle of the LV system and MV system is proposed considering the disadvantages of non- 

global optimization brought by local voltage regulation of inverter. In [23-24], the optimal control of 

transformer multi-taps on the feeder is carried out. The coordinated control of on-load tap changer 
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(OLTC) achieves the maximization effect of PV consumption while ensuring the minimum number of 

tapping actions. 
 

4. Other key measures for voltage control 

Adopting the "distributed PV+energy storage" mode has become a key measure for the integration of 

intermittent distributed renewable energy power generation. The introduction of energy storage can 

better solve the voltage management problem [26]. Reference [27] controls the energy storage devices 

in a low-voltage distribution network to achieve voltage control by adopting a “receding horizon” 

method. The proposed method is characterized by the ability to predict future possible voltage 

problems based on very small amounts of information. As shown in the figure below [28], after the 

introduction of energy storage, the excess output will be stored in the energy storage unit at the peak 

of the PV output at noon, and the power will be used for the load during the night period, effectively 

avoiding the overvoltage caused by the excessive PV output. 
 

 

 
7:00 12:00 17:00 22:00 

Figure 2. Overvoltage prevention effect using energy storage for load-shift 

Three charge and discharge modes of energy storage were compared. 1) Voltage control mode, 2) 

Minimizing reverse power flow mode, and 3) Scheduling mode, as shown in Figure 5. In the voltage 

control mode, as long as the voltage exceeds the limit, the battery is charged. The minimum reverse 

power flow mode is charged until the battery state of charge (SOC) is lower than the upper limit until 

the battery is full. The scheduling mode is to charge at a certain time every day regardless of the 

voltage. The results of the example show that the voltage control mode is better than the other two 

modes. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. The effect of three charge and discharge modes of energy storage on overvoltage 

control 
 

5. Conclusions 

With large-scale distributed PV system integrated into the medium and low voltage distribution 

network, it will completely change the unidirectional power flow characteristics of the traditional 

distribution network. In the increasingly complex operating environment of power distribution systems, 

it is necessary to rely on efficient and practical new operation control technology, thereby actively 

supporting the safe operation of the distribution network. The implementation of voltage flexible 

control methods will provide important theoretical and methodological support for the development of 

Energy 
transfer 

Cha ging Load curve 

Overvoltage 

7:00 17:00 

 

 

 

 

 

 

 

 

 
 

PV 
curtailment 

100 
 

 

 
30 

10:00 14:00 

V
o

lt
ag

e
 

P
V

 o
u

tp
u

t 
p

o
w

e
r 

V
o

lt
a
g

e 
B

a
tt

e
ry

 S
O

C
 



Dogo Rangsang Research Journal                                                       UGC Care Journal 

ISSN : 2347-7180                                                    Vol-10 Issue-02 No. 01 February 2020  

Page | 261                                                                                    Copyright @ 2020 Authors 

 

 

active distribution networks and smart grids. The above PV active and reactive power control methods 

all consider the technical aspects of improving the local PV consumption capacity and ensuring the 

safe and stable operation of the power distribution system. In the future, we should focus on the 

economics of different voltage control technologies, and explain the principle of optimal active and 

reactive power control of PVs from the perspective of economic efficiency, aiming at achieving the 

technical and economic balance of voltage control in distribution systems. At the same time, the 

influence of power distribution system flexibility, availability of renewable energy, installation 

capacity and other parameters on voltage optimization control should be further analyzed. 
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