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Abstract— Accurately predicting defective software program gadgets enables practitioners goal defective gadgets 

and prioritize their efforts to hold software program quality. Prior research use machine-studying fashions to hit upon 

defective software program code. We revisit beyond research and factor out capability improvements. Our new 

examine proposes a revised benchmarking configuration. The configuration considers many new dimensions, 

consisting of elegance distribution sampling, assessment metrics, and trying out procedures. The new examine 

additionally consists of new datasets and fashions. Our findings advise that predictive accuracy is typically good. 

However, predictive energy is closely stimulated with the aid of using the assessment metrics and trying out procedure 

(frequentist or Bayesian approach). The classifier consequences rely upon the software program project. While it's far 

hard to pick out the satisfactory classifier, researchers have to remember extraordinary dimensions to conquer 

capability bias. 

 

 

1 Introduction 
Predicting defective code in the software development process is a key aspect of software analytics. 

Software testing firm Tricentis estimated the cost of software bugs at $1.1 trillion in 2016 [1-3]. Quality 

assurance resources are usually limited to maintaining the software. Predicting faulty units accurately 

allows developers and managers to prioritize their actions in the software development cycle and to 

address these faults. In defective software, a faulty unit might result from various factors that are hard to 

detect using human processes such as code review. Given the large size, number of lines of code, and 

complexity of a typical software project, a much more scalable approach is needed. Many researchers 

have proposed quantitative approaches to this research problem. Thanks to the proliferation of IT 

artifacts, researchers can use increasing amounts of data and conduct a wide range of experiments to 

pursue a better solution. 

The number of available software projects not only provides researchers with a good collection of 

datasets, but also encourages many different research areas. For instance, data quality may influence 

predictive accuracy. The design of the model-building and selection process determines the model’s 

ability to predict faulty units. The strength of the predictive results may not always be identical, since 

the evaluation metrics used will have different underlying theoretical foundations. Therefore, different 

models may score differently with various metrics. These variables are important parameters when 

designing experimental studies. 

 

Classification techniques 

Currently there are two main classes of classification techniques in software defect prediction: the 

statistical approach and the machine-learning approach. While the statistical approach uses traditional 
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statistical models, such as regression models, the machine learning approach uses methods adapted from 

other research fields . For instance, decision tree models and their ensemble counterpart random forests 

often appear in benchmarking studies as machine-learning candidates. Researchers may argue that the 

boundary between the two approaches is unclear, as all quantitative approaches are potentially rooted in 

statistics science. 

We consider six main classes of techniques, namely Bayesian approaches, tree-based approaches, support 

vector machine approaches, neural network approaches, boosting approaches, and others. These six main 

approaches cover a wide range of techniques. Some of them have been used in different contexts. Others, 

such as Bagged multilayer perceptron artificial neural networks and Ridge regression, have not been 

covered in prior studies, to the best of our knowledge [4]. However, these methods have shown promising 

results in other settings. Some other methods, such as the Bayesian and tree-based approaches, have 

appeared in prior benchmarking studies. They are also included in this new benchmarking study as the 

baseline. 

We are aware of the growing body of literature on new classification methods . Among many others, 

many studies have considered the deep learning paradigm . Deep learning models are more 

computationally extensive and difficult to train than many other classifiers. While deep learners obtain 

promising results on large datasets, the cost of building such models is often prohibitively high. The 

literature also shows that classical approaches such as support vector machines (SVM) might perform 

as well as deep learners. Researchers should be aware of the trade-off between using complex and 

simple models. In particular, many software repositories are limited in size, and thus produce datasets 

that might not be large enough to justify the usage of deep learners. 

It is necessary to fine-tune some models to achieve good results . While some classifiers used in the 

literature do not require tuning, others do. An ensemble model, which is based on a bag of learners (e.g. 

tree learners), can be fine-tuned, since the number of learners can be tuned. Similarly, a support vector 

machine or a penalized regression model have weighting parameters in their objective functions for 

regularization. The same classifier algorithm may not perform equally well with different parameter 

configurations. Hence, a model selection procedure is needed to find the optimal results . 

When the number of observations with one class value dominates the other, e.g. |𝒚 = 1| ≫ |𝒚 = −1| , 
we consider it as a class imbalance problem. Some classifiers may find it difficult to learn from an 

imbalanced dataset . When one type of event (faulty unit) is rare, some classifiers fail to build a model 

capturing the underlying data distribution, while others just fail to converge. Oversampling and 

undersampling techniques can address this issue . These techniques start from the original dataset, then 

add more minority class observations with oversampling, and/or remove some majority class 

observations via undersampling. Both methods operate only on the dataset without the need to modify 

the classification algorithm. The synthetic minority oversampling technique (SMOTE) is a widely 

considered solution and has successfully improved the accuracy of classifiers . The SMOTE technique 

randomly draws nearest neighbor instances of the minority instance and interpolates samples based on 

the original data and the random nearest neighbors. Prior research has extended the idea of interpolation 

by considering both minority and majority classes, together with other
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 Model evaluation 

A classification model can provide predictive estimates to forecast faulty units in software projects. The 

classification model takes software metrics as inputs and produces a quantitative measure representing 

the likelihood of errors. In a benchmarking study, researchers may obtain different predictive estimates . 

It is vital to evaluate the predictive estimates and quantify predictive accuracies. 

The Receiver Operating Characteristic (ROC) curve  is a commonly used measure for software defect 

prediction. The space of the ROC curve, often known as the AUC (area under the curve) measures the 

ability of a classifier to discriminate between faulty and non-faulty modules. The statistical 

interpretation of the AUC shows that the AUC is a probability that a classification model ranks a 

randomly chosen faulty observation higher than a randomly chosen non- faulty observation. A higher 

AUC value suggests that the corresponding classification model may predict better than those with 

lower AUC values. By definition, an AUC value ranges from . 

While many studies adopt the AUC measure, other work shows its potential flaws. For example, the 

AUC metric uses different misclassification costs for different classifiers . The misclassification cost, in 

the context of software fault prediction, is associated with the fact that classification errors may differ in 

importance. Classifying “faulty” as “non-faulty” has a different cost from classifying “non- faulty” as 

“faulty.” Research has shown that when using the AUC metric, the misclassification cost is related to 

the classifier [50]. This means that the AUC metric uses different rules to measure classifier performance 

and hence, should not be considered as a coherent measure. We propose using a new alternative metric, 

the “H-measure” to address these issues. We introduce a dedicated weighting function to adjust the 

evaluation of the misclassification cost. 

While a given metric measures predictive accuracy, a classification model might produce different 

results for different datasets. A classification model performs well on one dataset might perform less 

well on another dataset . Thus, we need to develop a rigorous testing procedure to find out whether 

certain methods outperform the others. 

Formally, the statistical comparison of classifier models uses statistical tests such as a Friedman test to 

identify whether classifiers perform differently . The Friedman test is favored over other parametrical 

tests such as ANOVA because it relaxes assumptions on normality and so on. When the test result is 

significant, post-hoc tests will provide pairwise comparisons, to see whether one classifier outperforms 

the rest. For a given evaluation metric, the average ranks of each classifier over
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all datasets show the relative strength of their predictive performance. The post-hoc tests check whether 

the difference in average ranks are great enough to conclude that the performances are significantly 

different. 

Formally, given 𝑘 different classifiers and 𝑁 datasets, we consider two classifiers 𝑖 and 𝑗 with average 

rank 𝑅𝑖 and 𝑅𝑗 to perform differently when |𝑅𝑖 − 𝑅𝑗 | ≥ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. We define the critical 

distance as 
 

𝑞𝛼 is a test statistic related to the number of classifiers [55]. 

Alternatively, researchers might use clustering techniques to separate classifiers into different groups 

based on their performance. One such technique is the Scott-Knott test [56]. Although many studies 

have attempted to use this method [33, 38, 41], the literature shows that the violation of normality 

assumption in this test and its potential extension will lead to statistical bias [57]. 

The approach using critical distance undoubtedly shows its popularity, and it has been used in many 

previous studies [4]. Nonetheless, this approach has still not addressed some important issues. For 

instance, in an experimental setup involving 𝑘 different classifiers and 𝑁 datasets, it may not make sense 

to include and compare all classifiers as some of them might underperform. More straightforwardly, 

when a classifier performs worse than other classifiers, it is less meaningful and may be removed from 

the comparison [45]. On the other hand, since the average ranks of two classifiers are tested based on 

the total number of classifiers 𝑘, having another “bad” classifier will influence the pairwise comparison, 

although it should not. Therefore, some researchers are in favor of pairwise comparisons rather than 

multiple comparison [58]. They argue that after an initial Friedman test, a Wilcoxon rank sum test can 

be used to compare two classifiers in a pairwise fashion, to help find the “best” classifier. 

Another pitfall of such an approach is that most statistical
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TABLE 1 
AN ANALYSIS OF THE SOFTWARE DEFECT PREDICTION LITERATURE 

 
Title year Data Models Evaluation Statistical tests 

 nr 
Data quality 

datasets 
of Class 

Imbalance classifie rs tuning AUC H 

F test +  post 
correction 

hoc 

[28] 2018 √ 14 √ 7 × × × × × 

[33] 2018 √ 9 √ 6 √ √ × × × 

[12] 2017 √ 16 × 3 / √ × × × 

[54] 2017 × 11 × 9 × √ × √ × 

[29] 2017 √ 20 √ 5 √ × × × × 

[40] 2016 √ 11 × 2 × √ × × × 

[30] 2016 √ 16 √ 8 √ √ × × × 

[6] 2016 × 15 × 13 × √ × × × 

[19] 2016 √ 14 × 6 √ × × × × 

[41] 2016 √ 18 × 3 × √ × × √ 

[25] 2016 √ 17 × 4 √ √ × × × 

[26] 2016 √ 18 × 26 √ √ × × × 

[27] 2015 × 7 × 4 √ × × × × 

[31] 2015 √ 7 √ 1 √ √ × × × 

[38] 2015 √ 20 × 15 ? √ × × √ 

[32] 2014 √ 10 √ 11 × √ × × × 

[14] 2014 ? 9 × 5 √ √ × × × 

[52] 2013 × 41 × 1 √ × × × × 

[45] 2013 × 11 × 17 √ √ √ √ × 

[46] 2013 × 9 √ 2 × √ × × × 

[34] 2012 × 11 √ 2 × × × × × 

[47] 2012 √ 3 × 4 ? √ × × × 

[15] 2012 ? 10 × 4 ? √ × × × 

[53] 2012 √ 34 × 5 × × × × × 

[20] 2012 × 7 × 4 ? × × × × 

[48] 2011 √ 17 × 3 √ √ × × × 

[21] 2011 × 7 × 5 ? × × × × 

[42] 2011 ? 3 × 1 × × × × × 

[22] 2011 × 1 × 1 / × × × × 

[43] 2010 × 10 × 9 √ √ × × × 

[8] 2010 √ 3 × 1 / √ × × × 

[9] 2010 × 1 × 7 √ √ × × × 

[39] 2010 × 3 × 4 × × × × × 

[10] 2009 × 10 × 1 / × × × × 

[13] 2009 × 8 × 1 / √ × × × 

[11] 2008 × 3 √ 7 × × × √ × 

[16] 2008 ? 4 × 9 × × × × × 

[4] 2008 × 10 × 22 √ √ × √ × 

[17] 2007 × 6 × 3 × × × × × 

[44] 2007 × 8 × 6 × √ × × × 

Average/count 
 

17 11.3 9 6.2 15 24 1 4 2 

 

√= yes, ×= no, = not mentioned or not clear, /= does not apply. More specifically, if a study has tuned the parameters, it is considered as “√”, if the study 

did not tuned the parame-ters, or only those of some of the models, it is marked “×”. “?” is used if the study does not mention the setting. “/” will be 

used if the standard does not apply, e.g. the model in use may not require tuning. 

Unless otherwise noted, the number of datasets refers to different projects. Within the same project, there might be different dataset versions. 
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“AUC” refers to the area under the receiver operating characteristic curve. “H” refers to the H measure proposed in Hand’s paper. 
“F test” refers to the Friedman test, and “post-hoc” refers to post-hoc Nemenyi test. 

“correction” refers to situations where the statistical tests have been treated to correct normality assumption, or other bias.
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tests in use have been developed using a Frequentist approach. While much statistical science research 

has been moving towards the Bayesian paradigm, the software defect prediction literature has not yet 

entirely addressed this gap. Statistical tests such as ANOVA, the Friedman test and the Wilcoxon rank 

sum test are considered as Frequentist hypothesis testing procedures. Unfortunately, frequentist tests 

might not address the research needs. Researchers are interested in the power of the test, the probability 

of whether two classifier performances are identical or not, from the observed data. The confidence level 

does not link the probability to the observed data as such, but instead, provides a statement about the 

random draw of the sample data in general. A confidence level of 95% asserts that 19 out of 20 times, 

the estimated parameter might lie within the confidence interval of the collected sample, without 

knowing whether it lies within the particular observed data sample or not. A Bayesian approach, on the 

other hand, estimates the likelihood based on the observed data and calculates the posterior probability 

that one classifier will outperform the other. Furthermore, a Bayesian test allows us to compute the 

magnitude and uncertainty of the comparison. If one classifier is better than another, we know how strong 

the relationship is. Likewise, if we cannot conclude one is better than the other, we know to what extent 

they are identical, or namely “practically equivalent” [59]. While the Bayesian approach addresses some 

shortcomings of its Frequentist counterpart, it should be considered as an alternative rather than the 

panacea, since each paradigm has its own scope and limitations. 

We summarize our literature analysis in Table 1. The inclusion rule takes into account the advancement 

of our prior study [60]. We have considered major software engineering outlets and conferences. 

Additionally, we have analyzed a number of review articles to broaden the horizon of the article search. 

A wide range of intellectual contribution should be taken into consideration, including but not limited to 

new classification methods, processing techniques, and tuning methods from various scholars. 

However, although between 70 and 100 articles might deserve to be included [61, 62], it is impossible to 

compare all of them for extensively. We will focus on the recent literature, since recent research benefits 

from greater data availability and methodological advancement than older work. For instance, the 

discussion of the problems of using Area under ROC curve only started around 2009 [51]. The same 

observation might be made for data collection from open source platforms such as GitHub. Moreover, 

journals often publish more content on this topic than conference publications, due to different word- 

count limits and expectations for research output. Thus, we summarize what we consider a representative 

list of publications. 

On average, prior studies use 11.3 project datasets, and we observe that the number of datasets increases 

over the years, thanks to the proliferation of open source projects and metric extraction tools. Researchers 

identify and address data quality issues. Many studies address the class imbalance problem [4, 28, 29, 

33]. Other studies do not, even though they mention the issue [12, 26]. The number of classifiers used is 

6.2. This number is not considered large [4], because researchers tend to believe, in line with early results, 

that the choice of classifiers does not impact performance [38]. About 40% of the listed studies tune the 

model [25, 29] while others either do not [42, 53], or use default parameters [32, 39]. About 60% of the 

studies adopt the AUC metric, but very few of them address its potential limits [45]. To evaluate model 

performance, many studies use the t test [13, 26, 39] or the Scott-Knott test [38, 41], whose validity [4, 

55, 57] has been questioned. 
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2 Research methods 

 Dataset collection 

We have included the MDP project to evaluate classifier performance empirically 

(http://openscience.us/repo/defect/ ). The MDP project contains a number of defect datasets 

frommany NASA artifacts, e.g. control software for observers, and has been used in many research 

articles[45]. While a popular choice for test datasets, discussions of data quality issues in the MDP 

project have attracted concern [3]. The literature reports a number of data quality issues that may 

jeopardize research outcomes, e.g. there are numerically identical variables, missing values, 

implausible values. To address this issue, we adopted the approach in [3] to improve data quality. 

While we retained the setup used in this prior study, we added one additional procedure to preprocess 

the dataset. 

Variables that are linear combinations of others may introduce a collinearity problem. While many 

software defect papers [4] do not discuss this issue specifically, the collinearity problem might introduce 

bias to the statistical model and influence the predictive outcome [2, 63]. We detected this problem using 

the “findLinearCombos” function in the R package “Caret”[64] and removed redundant linear 

combinations. We used a similar approach for datasets collected from the GitHub project. 

While the MDP project is popular among researchers, public open source software repositories provide 

many more opportunities for empirical testing. We also included software defect datasets collected from 

GitHub [65]. This is an attractive data source, since commercial and/or confidential research projects 

often do not release their datasets. A version control system with bug-fixed reports allows the SZZ 

algorithm to automate the process of identifying software defects and constructing datasets [66]. It gives 

researchers more possibilities to collect datasets as they wish. 

We captured the bugs in the GitHub dataset at both class and file level. We used class-level bug datasets. 

Investigating the file level could also be useful; however, a number of file-level datasets are limited in 

size and bug cases. For instance, all file-level datasets in the project “Android-Universal- Image-Loader” 

have fewer than 100 observations. Very small datasets cannot provide sufficient data for training and 

testing classifiers; hence, we chose class level datasets, as they are larger than their file- level counterparts 

are. In most software projects, one file contains exactly one class. However, multiple classes can appear 

in one file. The reason for this is that in some files, the class structures are nested, and inner classes may 

exist for various coding purposes and styles. 

Unlike the MDP project, the GitHub project evolves over different versions, and thus has different 

waves of datasets. Since the number of different versions is large, we only present an aggregated 

average result here. The full result appears in the appendix. 

We addressed the data imbalance problem by oversampling until the faulty class reached 20%, using 

Adaptive synthetic sampling (ADASYN) algorithm[37], because the mean and median defect rate of 

datasets that do not suffer from the imbalance problem is 17.8% and 18 % respectively; so roughly 

20%. While the literature shows that a balanced class distribution may lead to good classification 

results, a minority class ratio of 20% also yields promising results [67]. Another reason is that 

empirically we do not expect the bug rate to be very high; so 20% would be a large enough number. It 

http://openscience.us/repo/defect/
http://openscience.us/repo/defect/
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would be very unlikely for 50% of the code in a dataset to be faulty. An overview of the datasets appears 

in Table 2.TABLE 1 

 
AN OVERVIEW OF THE DATASETS 

 
MDP 

Number of 
observations 

 Number of 
variables 

 Number of fault 
observations 

 Percentage of 
fault 

CM1 
 

688 
 

37 
 

84 12.21% 

JM1  19186  21  3518 18.34% 

KC1  4192  21  650 15.51% 

KC3  400  39  72 18.00% 

MC1  18554  38  136 0.73% 

MC2  254  39  88 34.65% 

MW1  528  37  54 10.23% 

PC1  1518  37  122 8.04% 

PC2  3170  36  32 1.01% 

PC3  2250  37  280 12.44% 

PC4  2798  37  356 12.72% 

PC5  34002  38  1006 2.96% 

  GitHub (aggregated average)  
Android-Universal-Image- 

Loader 124.80 73.80 31.40 25.16% 

BroadleafCommerce 1714.60 91.20 137.20 8.00% 

MapDB 496.80 86.40 106.40 21.42% 

antlr4 587.40 86.20 127.40 21.69% 

ceylon-ide-eclipse 1469.00 87.50 200.00 13.61% 

elasticsearch 4597.83 90.42 340.50 7.41% 

hazelcast 2964.00 89.88 174.38 5.88% 

junit 843.20 84.40 152.60 18.10% 

mcMMO 217.40 73.80 40.40 18.58% 

mct 2695.00 92.00 672.33 24.95% 

neo4j 5793.00 91.00 848.67 14.65% 

netty 1119.25 88.00 118.88 10.62% 

orientdb 1828.60 90.60 154.80 8.47% 

oryx 595.67 86.33 96.00 16.12% 

titan 1086.50 88.00 226.00 20.80% 

 
 Benchmarking classifiers 

We included 17 classifiers in this study. As discussed in the literature review, the selection includes six 

main classes of classifiers: Bayesian approaches, tree-based approaches, support vector machine 

approaches, neural network approaches, boosting approaches, and others. We adopted the Matlab, R and 

Weka implementation of those classifiers. Although classifiers with default parameter settings can 

predict defective units, we fine-tuned them to increase their predictive performance [25]. We considered 
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the sameTABLE 3 

AN OVERVIEW OF THE CLASSIFIERS 

Classifier names Acronym Implementation Candidate models 

Bagged multilayer perceptron artificial neural network   BaggingModelANN Matlab  4 

Boosted decision trees BoostingModelAdaBoostM1   Matlab 9 

CART CARTModel Matlab 12 

Logistic regression LRModel Matlab 1 

Multilayer perceptron artificial neural network MLPModel Matlab 171 

Random forest RFModelR R package "randomForest" 35 

Ridge Regression RidgeRegressionModel Matlab 10 

Linear support vector machine SVMModelLibLinear Matlab 29 

SVM with radial basis kernel function SVMModelRbf Matlab 300 

Alternating decision tree WEKAModelADT WEKA 5 

Tree Augmented Naive Bayes WEKAModelBayesNetTAN   WEKA 1 

J4.8 WEKAModelJ48 WEKA 12 

k-nearest neighbor WEKAModelKnn WEKA 8 

Logistic model tree WEKAModelLMT WEKA 1 

Naive Bayes WEKAModelNaiveBayes WEKA 1 

Radial basis function neural network WEKAModelRBFNetwork      WEKA 5 

  Voted perceptron WEKAModelVP WEKA 1 
 

 
 

classifier algorithm with a different parameter configuration as a different candidate model. For 

example, we considered CART models with different parameter values for “minleaf” (the minimal 

number of observations per tree leaf) as different candidate models. When testing a specific algorithm, 

we assessed candidate models with different parameters using cross validation within the training set. 

We used the candidate model with the best predictive performance for testing. We present an overview 

of all classifiers in TABLE . 

 Experimental setup 

  

We split the datasets into training and testing sets using fivefold cross validation, to assess their predictive 

accuracy. Within each fold, we used another internal five-fold cross validation for model selection, to 

avoid the potential bias of training and testing models on the same dataset. We conducted this process to 

find the best parameter configuration for each classifier. We assessed predictive outcome using the AUC 

and the H measure. When calculating the H measure, we set the underlying Beta distribution parameters 

to the constant value two. The Beta distribution function served as a weighting function to address the 

shortcoming of the AUC metric, as is common in the literature [51, 60]. 

We evaluate the obtained results with average ranks first. For the top performing candidates, we did not 

only use post-hoc tests but also compared the post-hoc results using Bayesian tests. More specifically, 

we compared the top performing classifiers we compare them in a pairwise fashion manner. Classifier- 

performance comparisons often violate the assumption that the samples are independent and identically 

distributed (i.i.d). Bayesian tests are useful, since they build a hierarchical model based on the joint 

distribution learned from the sample. Furthermore, the posterior probabilities (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖 ≫ 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗), (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗) and (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖 ≪ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗) estimate whether one 

classifier outperforms another, or they are “practically equivalent,” meaning that we cannot empirically 

conclude which is better. The “practically equivalent” situation happens when the mean difference of two 
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classifiers lies in a very small region, such as [-0.01, 0.01] [59, 68]. This region is also known as a region 

of practical equivalence (rope) [69]. In other words, when the Bayesian hierarchical test results fall into 

the “rope”, we consider the classifiers as practically equivalent. For our experimental setup, the 𝐴𝑈𝐶𝑟𝑜𝑝𝑒 

= [−0.01, 0.01] as suggested in the literature [59, 69]. However, there is a lack of prior evidence with 

regard to the H measure. After some experiments, we set 𝐻𝑟𝑜𝑝𝑒 =[−0.05, 0.05] , as such a configuration 

is most stable when conducting Bayesian tests (https://github.com/BayesianTestsML ). The reason for 

the difference between the AUC and H metrics is that the variance of possible AUC values is much 

smaller than the variance of the H measure, and thus should be adjusted differently for the “rope”. 

3 Results and discussion 
In this section, we first report the results of the machine learning models and statistical comparison in 

section 4.1. In section 4.2, we report the findings of our study and discuss their differences from other 

work. We discuss limitations and future work in section 4.3. 

 Model results and statistical tests 

We list the results of our experiments below. The GitHub project results are aggregated while the MDP 

project results are not. We have retained the raw result of the MDP project to compare with prior 

literature. The raw GitHub datasets generated too many observations and results to display in the paper. 

We have included raw results of the GitHub projects at different times in the Appendix. TABLE 2 and 

TABLE 3 report the AUC and H measure results of the MDP project, respectively. 

 
TABLE 2 
AUC RESULTS OF MDP DATASETS 

 
  CM1 JM1   KC1   KC3   MC1 MC2 MW1 PC1    PC2    PC3    PC4    PC5    Average 
BaggingModelANN 0.984 0.737 0.863 0.955 0.992 0.948 0.966 0.981 0.994 0.955 0.986 0.981 0.945 

BoostingModelAdaBoostM1 0.926 0.733 0.840 0.955 0.987 0.961 0.926 0.952 0.984 0.904 0.970 0.977 0.926 

CARTModel 0.381 0.507 0.500 0.312 0.403 0.233 0.407 0.397 0.360 0.385 0.484 0.500 0.406 

LRModel 0.854 0.707 0.809 0.866 0.929 0.868 0.833 0.882 0.970 0.837 0.923 0.960 0.870 

MLPModel 0.977 0.770 0.919 0.954 0.991 0.981 0.920 0.981 0.992 0.979 0.984 0.986 0.953 

RFModelR 0.960 0.947 0.950 0.992 0.952 0.990 0.942 0.982 0.996 0.986 0.994 0.988 0.973 

RidgeRegressionModel 0.830 0.709 0.808 0.842 0.916 0.785 0.816 0.873 0.902 0.837 0.906 0.954 0.848 

SVMModelLibLinear 0.797 0.708 0.801 0.818 0.934 0.875 0.803 0.860 0.906 0.833 0.896 0.954 0.849 

SVMModelRbf 0.966 0.843 0.903 0.994 0.982 0.993 0.904 0.949 0.992 0.989 0.984 0.984 0.957 

WEKAModelADT 0.974 0.765 0.887 0.967 0.991 0.933 0.994 0.977 0.986 0.927 0.986 0.986 0.948 

WEKAModelBayesNetTAN 0.814 0.727 0.821 0.797 0.973 0.785 0.807 0.884 0.943 0.839 0.922 0.977 0.857 

WEKAModelJ48 0.870 0.667 0.786 0.885 0.500 0.951 0.799 0.764 0.500 0.815 0.933 0.859 0.777 

WEKAModelKnn 0.882 0.900 0.921 0.813 0.994 0.898 0.862 0.912 0.865 0.921 0.918 0.985 0.906 

WEKAModelLMT 0.972 0.947 0.953 0.937 0.982 0.944 0.964 0.974 0.994 0.957 0.988 0.990 0.967 

WEKAModelNaiveBayes 0.750 0.682 0.792 0.703 0.917 0.747 0.770 0.804 0.896 0.769 0.836 0.940 0.801 

WEKAModelRBFNetwork 0.909 0.720 0.860 0.925 0.970 0.932 0.891 0.892 0.813 0.939 0.945 0.972 0.897 

  WEKAModelVP 0.749 0.664 0.726 0.780 0.652 0.789 0.772 0.775 0.552 0.762 0.835 0.817 0.739  
 

TABLE 3 
H MEASURE OF MDP DATASETS 

 
  CM1  JM1   KC1   KC3   MC1  MC2  MW1   PC1   PC2   PC3   PC4   PC5   Average 
BaggingModelANN 0.802 0.136 0.322 0.821 0.504 0.777 0.701 0.698 0.727 0.603 0.750 0.389 0.603 

BoostingModelAdaBoostM1 0.778 0.124 0.265 0.805 0.521 0.876 0.749 0.586 0.939 0.343 0.643 0.348 0.581 

CARTModel 0.000 0.007 0.000 0.001 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.001 

LRModel 0.292 0.107 0.212 0.442 0.239 0.574 0.396 0.285 0.265 0.212 0.443 0.289 0.313 

MLPModel 0.828 0.187 0.570 0.853 0.637 0.898 0.703 0.846 0.868 0.809 0.870 0.477 0.712 

RFModelR 0.830 0.766 0.755 0.890 0.727 0.928 0.803 0.791 0.960 0.838 0.877 0.825 0.833 

RidgeRegressionModel 0.244 0.107 0.217 0.365 0.224 0.401 0.321 0.235 0.124 0.217 0.393 0.272 0.260 

https://github.com/BayesianTestsML
https://github.com/BayesianTestsML
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SVMModelLibLinear 0.250 0.107 0.216 0.387 0.134 0.615 0.268 0.219 0.064 0.179 0.326 0.251 0.251 

SVMModelRbf 0.721 0.436 0.653 0.905 0.736 0.920 0.720 0.794 0.960 0.847 0.824 0.810 0.777 

WEKAModelADT 0.820 0.139 0.361 0.796 0.693 0.829 0.915 0.753 0.950 0.524 0.761 0.412 0.663 

WEKAModelBayesNetTAN 0.166 0.121 0.216 0.347 0.280 0.431 0.388 0.311 0.150 0.173 0.373 0.372 0.277 

WEKAModelJ48 0.468 0.091 0.197 0.588 0.000 0.774 0.405 0.217 0.000 0.245 0.441 0.218 0.304 

WEKAModelKnn 0.619 0.715 0.723 0.701 0.740 0.759 0.706 0.713 0.543 0.767 0.803 0.788 0.715 

WEKAModelLMT 0.735 0.716 0.740 0.812 0.738 0.808 0.734 0.725 0.630 0.807 0.905 0.828 0.765 

WEKAModelNaiveBayes 0.122 0.084 0.160 0.181 0.008 0.310 0.235 0.137 0.015 0.157 0.203 0.159 0.148 

WEKAModelRBFNetwork 0.544 0.131 0.348 0.664 0.349 0.826 0.606 0.461 0.335 0.585 0.522 0.371 0.478 

 WEKAModelVP 0.136  0.070  0.165  0.282  0.103 0.387  0.217  0.180  0.000  0.117  0.352  0.195     0.184  

 

 

 

 

 

 

 

We summarize AUC and H measure results for the GitHub project in TABLE 4 and TABLE 5. 

In terms of numerical values, the CART model performs the worst, even after parameter tuning. This 

observation holds true for both the GitHub and MDP projects, and using either the AUC or H measure. 

Another tree-based learner, the J4.8 classifier, has similar results with low AUC and H measures for both 

projects. The logistic regression model performs relatively well under the AUC measure, but when 

evaluated using the H measure, its ranking drops. While the AUC and H measure are strongly correlated 

(correlation coefficient = 0.978 for MDP and 0.951 for GitHub), the H measure ranks the classifiers 

somewhat differently from the AUC. In TABLE 6, we summarize the average ranks of the classifiers. 

The classifier Bagged neural network (BaggingModelANN) tends to score lower using the H measure 

than with the AUC. The opposite is true for the Logistic model tree (WEKAModelLMT) and Radial basis 

function neural network (WEKAModelRBFNetwork), as they score higher in terms of H measure. This 

outcome appears more often with the GitHub project than the MDP project. 

We highlight the five top-performing classifiers in red. The random forest model (RFModelR) appears 

to be the best model in terms of its ranks. “BaggingModelANN” and “MLPModel” also perform quite 

well. 

The Friedman tests performed over the GitHub and MDP project using the AUC and H measure show 

that the differences are significant (all four p values << 0.001).
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  TABLE 4 

AUC RESULTS OF GITHUB 
DATASETS 

  

 

BaggingModelANN 

BoostingModelAdaBoostM1 

CARTModel 

LRModel 

MLPModel 

RFModelR 

RidgeRegressionModel 

SVMModelLibLinear 

SVMModelRbf 

WEKAModelADT 

WEKAModelBayesNetTAN 

WEKAModelJ48 

WEKAModelKnn 

WEKAModelLMT 

WEKAModelNaiveBayes 

WEKAModelRBFNetwork 
  WEKAModelVP  

                                                         Android   Broadleaf   MapDB   antlr4   ceylon   elasticsearch   hazelcast   junit   mcMMO   mct     neo4j netty orientdb oryx titan   Average 0.917 0.836

 0.950      0.961     0.908 0.863 0.855       0.939       0.820       1.000   0.906   0.871      0.852      0.879  0.971     0.902 

0.776 0.828 0.927      0.962     0.915 0.845 0.848       0.930       0.792       0.999   0.899   0.863      0.863      0.854  0.973     0.885 

0.156 0.353 0.129      0.147     0.329 0.386 0.400       0.171       0.355       0.069   0.289   0.308      0.342      0.250  0.143     0.255 

0.890 0.725 0.904      0.946     0.802 0.806 0.767       0.904       0.755       0.993   0.822   0.806      0.767      0.825  0.946     0.844 

0.902 0.792 0.933      0.955     0.895 0.831 0.831       0.931       0.802       1.000   0.844   0.852      0.837      0.841  0.969     0.881 

0.937 0.829 0.937      0.969     0.919 0.868 0.856       0.940       0.842       0.999   0.873   0.873      0.862      0.878  0.972     0.904 

0.895 0.822 0.898      0.937     0.866 0.816 0.796       0.910       0.723       0.978   0.865   0.827      0.811      0.837  0.939     0.861 

0.875 0.799 0.899      0.894     0.875 0.768 0.793       0.858       0.780       0.942   0.826   0.788      0.811      0.850  0.889     0.843 

0.917 0.788 0.926      0.953     0.883 0.788 0.793       0.941       0.780       0.999   0.853   0.821      0.828      0.866  0.952     0.873 

0.939 0.825 0.955      0.968     0.892 0.847 0.838       0.934       0.799       0.999   0.889   0.874      0.859      0.874  0.972     0.898 

0.880 0.820 0.947      0.963     0.906 0.832 0.831       0.925       0.820       0.999   0.887   0.841      0.846      0.862  0.972     0.889 

0.907 0.660 0.905      0.952     0.776 0.638 0.647       0.829       0.722       0.992   0.746   0.751      0.719      0.798  0.950     0.799 

0.887 0.794 0.895      0.939     0.894 0.818 0.800       0.930       0.769       0.996   0.853   0.818      0.827      0.835  0.953     0.867 

0.911 0.779 0.927      0.948     0.856 0.829 0.820       0.904       0.790       0.999   0.856   0.858      0.828      0.837  0.967     0.874 

0.866 0.773 0.885      0.929     0.861 0.776 0.776       0.875   0.756       0.934   0.832   0.728      0.802      0.804  0.892     0.833 

0.879 0.761 0.923      0.965     0.893 0.774 0.780       0.929       0.726       0.997   0.774   0.795      0.788      0.842  0.953     0.852 
0.845 0.751 0.897      0.916     0.841 0.683 0.734       0.881       0.747       0.972   0.735   0.768      0.768   0.816  0.905     0.817 

  

TABLE 5 
H MEASURE OF GITHUB DATASETS 

 

  Android   Broadleaf   MapDB   antlr4   ceylon   elasticsearch   hazelcast   junit   mcMMO    mct    neo4j   netty   orientdb   oryx   titan    Average  
 

BaggingModelANN 0.696 0.258 0.749 0.791 0.532 0.286 0.254 0.660 0.380 0.990  0.564 0.400 0.304 0.584  0.827 0.552 

BoostingModelAdaBoostM1 0.494 0.256 0.712 0.822 0.558 0.220 0.201 0.682 0.386 0.996  0.535 0.385 0.252 0.504  0.827 0.522 

CARTModel 0.006 0.000 0.003 0.005 0.021 0.001 0.000 0.002 0.008 0.003  0.001 0.001 0.000 0.004  0.006 0.004 

LRModel 0.723 0.177 0.641 0.789 0.509 0.198 0.132 0.614 0.252 0.908  0.428 0.229 0.180 0.455  0.767 0.467 

MLPModel 0.786 0.237 0.746 0.841 0.532 0.240 0.217 0.694 0.344 0.998  0.550 0.421 0.268 0.565  0.833 0.551 

RFModelR 0.802 0.269 0.778 0.851 0.559 0.291 0.242 0.680 0.432 0.998  0.575 0.438 0.316 0.565  0.852 0.577 

RidgeRegressionModel 0.670 0.240 0.678 0.746 0.442 0.196 0.172 0.577 0.308 0.803  0.395 0.293 0.235 0.531  0.688 0.465 

SVMModelLibLinear 0.624 0.222 0.580 0.548 0.384 0.127 0.145 0.430 0.328 0.654  0.281 0.156 0.198 0.377  0.528 0.372 

SVMModelRbf 0.755 0.238 0.723 0.820 0.545 0.213 0.171 0.700 0.351 0.980  0.518 0.330 0.248 0.509  0.766 0.524 

WEKAModelADT 0.793 0.247 0.745 0.820 0.561 0.253 0.220 0.658 0.364 0.995  0.553 0.415 0.268 0.536  0.846 0.552 

WEKAModelBayesNetTAN 0.704 0.251 0.778 0.839 0.579 0.195 0.195 0.644 0.425 0.997  0.548 0.303 0.245 0.499  0.836 0.536 

WEKAModelJ48 0.732 0.187 0.650 0.740 0.495 0.148 0.110 0.505 0.306 0.901  0.419 0.298 0.193 0.463  0.779 0.462 

WEKAModelKnn 0.705 0.215 0.690 0.716 0.520 0.221 0.179 0.607 0.298 0.972  0.528 0.306 0.239 0.456  0.753 0.494 

WEKAModelLMT 0.740 0.225 0.756 0.811 0.551 0.228 0.217 0.663 0.345 0.994  0.540 0.389 0.252 0.517  0.825 0.537 

WEKAModelNaiveBayes 0.701 0.126 0.595 0.655 0.373 0.137 0.081 0.439 0.266 0.635  0.282 0.180 0.122 0.382  0.517 0.366 

WEKAModelRBFNetwork 0.763 0.220 0.717 0.819 0.513 0.198 0.162 0.664 0.301 0.930  0.444 0.324 0.222 0.524  0.770 0.505 
  WEKAModelVP  0.589 0.190 0.635 0.657 0.428 0.148 0.112 0.497 0.269 0.760  0.379 0.195 0.152 0.390  0.595 0.400 

 

 

 

 

We conducted the post-hoc analysis to examine whether there are individual differences between 

classifiers. The critical distance is calculated as indicated in equation 1. Recall the number of datasets in 

MDP and GitHub are 12 and 15 respectively. As mentioned earlier, we did not include all 17 classifiers 

in the post-hoc tests since classifiers such as CART performed poorly on all datasets. Including CART 

would “inflate” the classifier count 𝑘, the test statistics 𝑞𝛼 and perhaps the critical distance. We give a 

numerical example below. 
 

𝑐
𝑑 

 

𝑐
𝑑 

 
𝑀𝐷𝑃 = 3.458√17(17+1) = 7.13 

6×12 
 

= 3.458√17(17+1) = 6.38

𝐺𝑖𝑡𝐻𝑢𝑏 
6×15
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When using all classifiers to compute the critical distance, the “biased” results suggest that only 

differences in ranks larger than 7.13 for MDP and 6.38 for the GitHub project should be considered 

significant.TABLE 6 

AVERAGE RANKS 
 

  GitHub MDP  

   AUC h AUC h 

BaggingModelANN  2.7    4.7    4.2    6.7 
BoostingModelAdaBoostM1 4.6    6.1    6.7    6.8 
CARTModel 17.0 17.0  17.0  16.8 

LRModel 12.3 11.9  10.8  11.3 

MLPModel 6.1    4.1    4.2    4.0 

RFModelR 2.4    1.7    2.8    1.8 

RidgeRegressionModel 10.3 10.8  12.2  12.2 

SVMModelLibLinear 12.0 14.3  12.4  12.7 

SVMModelRbf 7.7    7.0    4.3    3.2 

WEKAModelADT 3.1    4.1    4.5    5.0 

WEKAModelBayesNetTAN 5.4    5.9  10.7  11.7 

WEKAModelJ48 13.7 11.8  12.8  12.5 

WEKAModelKnn 9.5   10.0   7.8    5.6 

WEKAModelLMT 8.0    5.9    3.8    3.8 

WEKAModelNaiveBayes 13.5 15.1  14.5  15.5 

WEKAModelRBFNetwork 10.4   8.7    8.9    8.3 

  WEKAModelVP 14.3 14.0  15.3  15.1 

 

 

Under such test conditions, none of the classifiers can be clearly identified as the “best.” 

If we limit our scope to five classifiers, since we picked the five top-performing classifiers from each 

category in TABLE 6, the test results change: 
 

𝑐𝑑 
 

𝑀𝐷𝑃′ = 2.728√5(5+1) = 1.76 
6×12

 
 
 

𝑐𝑑 
 

𝐺𝑖𝑡𝐻𝑢𝑏′ = 2.728√5(5+1) = 1.58 
6×15

We can conclude using this approach that the random forest model outperforms the rest in terms of H 

measure for the GitHub project. For the rest of the comparison, although the random forest model 

ranks higher, we cannot statistically conclude that it outperforms the rest, because the difference in 

ranks is smaller than the critical distance. 

While the above testing procedure has often been used in the literature [4], its power is often doubted, 

and a Bayesian alternative is proposed [59]. We include a full report of comparisons of the various 

classifiers in the Appendix. TABLE 7 summarizes the comparative results of the top-performing 

classifiers
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TABLE 7 

PAIRWISE COMPARISON USING THE BAYESIAN TESTS 

 
Classifier 1 Classifier 2 AUC_MDP H_MDP AUC_GitHub H_GitHub 

BaggingModelANN BoostingModelAdaBoostM1 pe Pe pe pe 
BaggingModelANN MLPModel pe MLPModel pe pe 

BaggingModelANN RFModelR pe RFModelR pe pe 

BaggingModelANN SVMModelRbf pe SVMModelRbf pe pe 

BaggingModelANN WEKAModelADT pe Pe pe pe 

BaggingModelANN WEKAModelBayesNetTAN BaggingModelANN BaggingModelANN pe pe 

BaggingModelANN WEKAModelLMT pe WEKAModelLMT pe pe 

BoostingModelAdaBoostM1 MLPModel MLPModel MLPModel pe pe 

BoostingModelAdaBoostM1 RFModelR RFModelR RFModelR pe pe 

BoostingModelAdaBoostM1 SVMModelRbf SVMModelRbf SVMModelRbf pe pe 

BoostingModelAdaBoostM1 WEKAModelADT pe Pe pe pe 

BoostingModelAdaBoostM1 WEKAModelBayesNetTAN BoostingModelAdaBoostM1 BoostingModelAdaBoostM1 pe pe 

BoostingModelAdaBoostM1 WEKAModelLMT pe WEKAModelLMT pe pe 

MLPModel RFModelR pe Pe pe pe 

MLPModel SVMModelRbf pe Pe pe pe 

MLPModel WEKAModelADT pe Pe pe pe 

MLPModel WEKAModelBayesNetTAN MLPModel MLPModel pe pe 

MLPModel WEKAModelLMT pe Pe pe pe 

RFModelR SVMModelRbf pe Pe pe pe 

RFModelR WEKAModelADT pe RFModelR pe pe 

RFModelR WEKAModelBayesNetTAN RFModelR RFModelR pe pe 

RFModelR WEKAModelLMT pe Pe pe pe 

SVMModelRbf WEKAModelADT pe SVMModelRbf pe pe 

SVMModelRbf WEKAModelBayesNetTAN SVMModelRbf SVMModelRbf pe pe 

SVMModelRbf WEKAModelLMT pe Pe pe pe 

WEKAModelADT WEKAModelBayesNetTAN WEKAModelADT WEKAModelADT pe pe 

WEKAModelADT WEKAModelLMT pe Pe pe pe 

WEKAModelBayesNetTAN WEKAModelLMT WEKAModelLMT WEKAModelLMT pe pe 

 
pe = Practically 
equivalent 

     

According to TABLE 7 indicates that we cannot identify a “best” classifier when 

using results from the GitHub study. The top performers selected from TABLE 6 

are evaluated as “Practically equivalent.” When observing the test results of the 

MDP study, the random forest model no longer outperforms the MLP model in 

terms of H measure. This means that although the random forest model is ranked 

higher than the others, there is insufficient evidence that it outperforms the rest. 

In general, Bagged multilayer perceptron artificial neural network, Multilayer 

perceptron artificial neural network, Random forest, and Alternating decision tree 

all perform quite well in the experiments but in no specific order. While we have 

no clear view of the best classifier, statistical tests still indicate significant 

differences between classifiers. Classifiers such as CART, Logistic regression, 

Ridge Regression, linear SVM, Naïve Bayes, Radial basis function neural 

network, and Voted perceptron are not as effective as the Bagged multilayer 

perceptron artificial neural network , Multilayer perceptron artificial neural 

network , Random forest and Alternating decision tree classifiers, as indicated by 

the Bayesian test results. 

 Comparison with other studies 

The research results update our findings in a prior study [4] as we identify a list 
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of classifiers that are worse than others. Other studies have also reported that the 

classifiers can be divided into two groups with regard to their performance [38]. 

Such a “divide” in classifier performance can be observed in the MDP project 

and the GitHub projects. The benchmark study by Lessmann et al. has been cited 

over seven hundred times, and a quick search of the cited papers yields many 

interesting citations. Quite often researchers propose one specific use of a 

machine learning model in software defect prediction, such as Naïve Bayes [10], 

and use the work of Lessmann et al. [4] to justify their choice of classifier(s) 

[53]. Most frequently, authors reason that since Lessmann et al. did not find one 

best classifier, it does not matter which classifier we use. A few researchers 

perceive the work of Lessmann et al. differently. For instance, Bennin et al. state 

that “Lessman et al. [38] showed that RF was significantly better than 21 

other prediction models.”[29], although Lessmann et al. do not make any such 

assertion [4]. This study shows that, although it is still unclear which classifier 

performs the best, researchers should justify the use and validity of their choice 

of classifier [48]. They should also justify the reasoning behind their 

experimental setup and reporting [70]. 

A prior study reported that different empirical model validation methods 

introduce different levels of estimation bias, and that Single repetition holdout 

performs poorly as a validation method [41]. In some studies, when the 

researchers change the test setting from single repetition holdout to cross 

validation, the AUC score of certain classifiers changes drastically, and hence 

their ranking also changes. Yu et al. reported that Naïve Bayes performs better 

than Logistic regression and KNN when using a 50% training set. The same study 

also reported that when using 10-fold cross validation, Logistic regression and 

KNN outperform Naïve Bayes [12]. One cause of such confounded results is that 

the number of candidate models is limited. More extensive testing may avoid 

such bias. In our study, we observe that the CART model, which predicted better 

than random [4] (AUC > 0.5) in the previous study when using the holdout 

method, performs poorly when fivefold cross validation is used. The average 

ranks of the CART model and the Voted perceptron model (“WEKAModelVP") 

are consistent, thanks to the large pool of classifiers used. 

The GitHub datasets complement those of the MDP project interestingly. The 

GitHub results differ from those of the MDP project: a classifier that performs 

well on the GitHub project does not necessarily perform well on the MDP 

project. The finding might be interesting to software developers if they find their 

work similar to the open source projects on GitHub. The GitHub datasets include 

many different types of projects, such as data engines, business information 

systems, language processing tools, and games [6]. On the other hand, linking a 

specific software development project to the MDP datasets may not be easy. This 
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is one benefit of using open source platforms as a data source for our study. As 

the MDP datasets are still being used in much research work, researchers and 

practitioners should consider whether the research findings derived from MDP 

are generalizable to their own software. 

Another benefit of using open source software is that we can understand data 

quality problems better, since we have access to the source code. Prior research 

observed the data quality issue in MDP projects [3], but the reason for the 

problem was unclear. When the datasets contain duplicated observations, 

researchers do not have sufficient information to conclude whether these two 

observations represent two code modules with identical values, or a replication 

error. This is not the case with open source code, since each data observation is 

linked to its class and/or file. 

 Limitations and future studies 

In this paper, we primarily focus on the binary classification of software 

defects. However, software defects can be predicted in many other ways. 

Future studies should focus on other predictive tasks, such as time taken to fix 

a bug [71]. In a time series setting, alternative measures should be considered 

to enrich the findings. 

The literature has reported that class imbalance handling methods, e.g. 

sampling methods, will increase predictive accuracy [29, 33]. While in our 

study we consider sampling to improve data usability, as indicated in 3.1, we 

do not tune the sampling technique extensively to increase AUC or H metric 

scores, for instance by testing the class ratio.  

4 Conclusion 
We conducted our study using 17 classifiers on 27 datasets. Our work extends 

the literature [4, 61, 73] and includes a number of new dimensions. Our 

benchmarking study shows that software defect prediction should be assessed 

using extensive evaluation metrics and statistical tests. We discover that the 

random forest model (RFModelR) and neural network model (MLP) achieved 

quite good results. However, neither AUC nor H measure values lead to a 

significant difference in classifier performance. Meanwhile, it is quite complex 

to train and fine-tune these models. Therefore, the benefit of using complex 

models rather than simpler approaches is unclear [74]. If the predictive accuracy 

of a complex model such as the random forest is similar to that of simple models 

such as those from the WEKA library, then it might be better to choose a simpler 

model for practical reasons. Additionally, we notice that the AUC and H 

measures report different classifier performances. While the AUC measure is 

widely used in many studies [4, 24, 25, 45], an alternative metric can provide 

additional insights. 
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Stakeholders in software development are interested in using data science to 

make better decisions about their code. It is vital for researchers and practitioners 

to understand that advances in data science could affect their decisions. 

Particularly in the case of software defect prediction, our study shows that 

benchmarking study results should consider multiple dimensions, including the 

nature of datasets, predictive models, and evaluation procedures. It is critical to 

take advantage of new research findings to continue to improve defect prediction 

results. 

Benchmarking study results depend heavily on the choice of statistical 

procedures. In addition to the choice of classifiers, datasets and evaluation 

metrics, the statistical test procedure might also affect the research findings. The 

Frequentist and Bayesian paradigms analyze the data in different ways. Each 

paradigm has its own strengths and weaknesses. The Bayesian paradigm 

addresses many problems in the Frequentist approach. For example, it reports 

posterior probability on empirical data, and relaxes the assumptions of statistical 

tests. The Bayesian approach is computationally intensive when there is a large 

number of datasets and classifiers. The underlying Bayesian Hierarchical model 

might not be a perfect choice to model the mean difference of classifier 

performances. It often takes several iterations and research attempts to find the 

best underlying model structure in a Bayesian setting [75]. While the Bayesian 

approach criticizes the Frequentist approach with its i.i.d. assumptions, the 

Bayesian approach also makes a moderate number of assumptions about 

parameter distribution [59]. When designing the tests, one  
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