

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 240 Copyright @ 2020 Authors

Software fault prediction performance evaluation

Submitted By: Kaushik Mishra,Asst.Prof in Raajdhani Engineering College, Bhubaneswar

Umakanta Dash, Asst.Prof in Rajdhani Engineering College, Bhubaneswar

Sachikanta Pati, Asst.Prof in NM Institute of Engineering and Technology

Rasmita Panigrahi,Asst.Prof.in NM Institute of Engineering and Technology.

Abstract— Accurately predicting defective software program gadgets enables practitioners goal defective gadgets

and prioritize their efforts to hold software program quality. Prior research use machine-studying fashions to hit upon

defective software program code. We revisit beyond research and factor out capability improvements. Our new

examine proposes a revised benchmarking configuration. The configuration considers many new dimensions,

consisting of elegance distribution sampling, assessment metrics, and trying out procedures. The new examine

additionally consists of new datasets and fashions. Our findings advise that predictive accuracy is typically good.

However, predictive energy is closely stimulated with the aid of using the assessment metrics and trying out procedure

(frequentist or Bayesian approach). The classifier consequences rely upon the software program project. While it's far

hard to pick out the satisfactory classifier, researchers have to remember extraordinary dimensions to conquer

capability bias.

1 Introduction
Predicting defective code in the software development process is a key aspect of software analytics.

Software testing firm Tricentis estimated the cost of software bugs at $1.1 trillion in 2016 [1-3]. Quality

assurance resources are usually limited to maintaining the software. Predicting faulty units accurately

allows developers and managers to prioritize their actions in the software development cycle and to

address these faults. In defective software, a faulty unit might result from various factors that are hard to

detect using human processes such as code review. Given the large size, number of lines of code, and

complexity of a typical software project, a much more scalable approach is needed. Many researchers

have proposed quantitative approaches to this research problem. Thanks to the proliferation of IT

artifacts, researchers can use increasing amounts of data and conduct a wide range of experiments to

pursue a better solution.

The number of available software projects not only provides researchers with a good collection of

datasets, but also encourages many different research areas. For instance, data quality may influence

predictive accuracy. The design of the model-building and selection process determines the model’s

ability to predict faulty units. The strength of the predictive results may not always be identical, since

the evaluation metrics used will have different underlying theoretical foundations. Therefore, different

models may score differently with various metrics. These variables are important parameters when

designing experimental studies.

Classification techniques

Currently there are two main classes of classification techniques in software defect prediction: the

statistical approach and the machine-learning approach. While the statistical approach uses traditional

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 241 Copyright @ 2020 Authors

statistical models, such as regression models, the machine learning approach uses methods adapted from

other research fields . For instance, decision tree models and their ensemble counterpart random forests

often appear in benchmarking studies as machine-learning candidates. Researchers may argue that the

boundary between the two approaches is unclear, as all quantitative approaches are potentially rooted in

statistics science.

We consider six main classes of techniques, namely Bayesian approaches, tree-based approaches, support

vector machine approaches, neural network approaches, boosting approaches, and others. These six main

approaches cover a wide range of techniques. Some of them have been used in different contexts. Others,

such as Bagged multilayer perceptron artificial neural networks and Ridge regression, have not been

covered in prior studies, to the best of our knowledge [4]. However, these methods have shown promising

results in other settings. Some other methods, such as the Bayesian and tree-based approaches, have

appeared in prior benchmarking studies. They are also included in this new benchmarking study as the

baseline.

We are aware of the growing body of literature on new classification methods . Among many others,

many studies have considered the deep learning paradigm . Deep learning models are more

computationally extensive and difficult to train than many other classifiers. While deep learners obtain

promising results on large datasets, the cost of building such models is often prohibitively high. The

literature also shows that classical approaches such as support vector machines (SVM) might perform

as well as deep learners. Researchers should be aware of the trade-off between using complex and

simple models. In particular, many software repositories are limited in size, and thus produce datasets

that might not be large enough to justify the usage of deep learners.

It is necessary to fine-tune some models to achieve good results . While some classifiers used in the

literature do not require tuning, others do. An ensemble model, which is based on a bag of learners (e.g.

tree learners), can be fine-tuned, since the number of learners can be tuned. Similarly, a support vector

machine or a penalized regression model have weighting parameters in their objective functions for

regularization. The same classifier algorithm may not perform equally well with different parameter

configurations. Hence, a model selection procedure is needed to find the optimal results .

When the number of observations with one class value dominates the other, e.g. |𝒚 = 1| ≫ |𝒚 = −1| ,
we consider it as a class imbalance problem. Some classifiers may find it difficult to learn from an

imbalanced dataset . When one type of event (faulty unit) is rare, some classifiers fail to build a model

capturing the underlying data distribution, while others just fail to converge. Oversampling and

undersampling techniques can address this issue . These techniques start from the original dataset, then

add more minority class observations with oversampling, and/or remove some majority class

observations via undersampling. Both methods operate only on the dataset without the need to modify

the classification algorithm. The synthetic minority oversampling technique (SMOTE) is a widely

considered solution and has successfully improved the accuracy of classifiers . The SMOTE technique

randomly draws nearest neighbor instances of the minority instance and interpolates samples based on

the original data and the random nearest neighbors. Prior research has extended the idea of interpolation

by considering both minority and majority classes, together with other

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 242 Copyright @ 2020 Authors

 Model evaluation

A classification model can provide predictive estimates to forecast faulty units in software projects. The

classification model takes software metrics as inputs and produces a quantitative measure representing

the likelihood of errors. In a benchmarking study, researchers may obtain different predictive estimates .

It is vital to evaluate the predictive estimates and quantify predictive accuracies.

The Receiver Operating Characteristic (ROC) curve is a commonly used measure for software defect

prediction. The space of the ROC curve, often known as the AUC (area under the curve) measures the

ability of a classifier to discriminate between faulty and non-faulty modules. The statistical

interpretation of the AUC shows that the AUC is a probability that a classification model ranks a

randomly chosen faulty observation higher than a randomly chosen non- faulty observation. A higher

AUC value suggests that the corresponding classification model may predict better than those with

lower AUC values. By definition, an AUC value ranges from .

While many studies adopt the AUC measure, other work shows its potential flaws. For example, the

AUC metric uses different misclassification costs for different classifiers . The misclassification cost, in

the context of software fault prediction, is associated with the fact that classification errors may differ in

importance. Classifying “faulty” as “non-faulty” has a different cost from classifying “non- faulty” as

“faulty.” Research has shown that when using the AUC metric, the misclassification cost is related to

the classifier [50]. This means that the AUC metric uses different rules to measure classifier performance

and hence, should not be considered as a coherent measure. We propose using a new alternative metric,

the “H-measure” to address these issues. We introduce a dedicated weighting function to adjust the

evaluation of the misclassification cost.

While a given metric measures predictive accuracy, a classification model might produce different

results for different datasets. A classification model performs well on one dataset might perform less

well on another dataset . Thus, we need to develop a rigorous testing procedure to find out whether

certain methods outperform the others.

Formally, the statistical comparison of classifier models uses statistical tests such as a Friedman test to

identify whether classifiers perform differently . The Friedman test is favored over other parametrical

tests such as ANOVA because it relaxes assumptions on normality and so on. When the test result is

significant, post-hoc tests will provide pairwise comparisons, to see whether one classifier outperforms

the rest. For a given evaluation metric, the average ranks of each classifier over

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 243 Copyright @ 2020 Authors

all datasets show the relative strength of their predictive performance. The post-hoc tests check whether

the difference in average ranks are great enough to conclude that the performances are significantly

different.

Formally, given 𝑘 different classifiers and 𝑁 datasets, we consider two classifiers 𝑖 and 𝑗 with average

rank 𝑅𝑖 and 𝑅𝑗 to perform differently when |𝑅𝑖 − 𝑅𝑗 | ≥ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. We define the critical

distance as

𝑞𝛼 is a test statistic related to the number of classifiers [55].

Alternatively, researchers might use clustering techniques to separate classifiers into different groups

based on their performance. One such technique is the Scott-Knott test [56]. Although many studies

have attempted to use this method [33, 38, 41], the literature shows that the violation of normality

assumption in this test and its potential extension will lead to statistical bias [57].

The approach using critical distance undoubtedly shows its popularity, and it has been used in many

previous studies [4]. Nonetheless, this approach has still not addressed some important issues. For

instance, in an experimental setup involving 𝑘 different classifiers and 𝑁 datasets, it may not make sense

to include and compare all classifiers as some of them might underperform. More straightforwardly,

when a classifier performs worse than other classifiers, it is less meaningful and may be removed from

the comparison [45]. On the other hand, since the average ranks of two classifiers are tested based on

the total number of classifiers 𝑘, having another “bad” classifier will influence the pairwise comparison,

although it should not. Therefore, some researchers are in favor of pairwise comparisons rather than

multiple comparison [58]. They argue that after an initial Friedman test, a Wilcoxon rank sum test can

be used to compare two classifiers in a pairwise fashion, to help find the “best” classifier.

Another pitfall of such an approach is that most statistical

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 244 Copyright @ 2020 Authors

TABLE 1
AN ANALYSIS OF THE SOFTWARE DEFECT PREDICTION LITERATURE

Title year Data Models Evaluation Statistical tests

 nr
Data quality

datasets
of Class

Imbalance classifie rs tuning AUC H

F test + post
correction

hoc

[28] 2018 √ 14 √ 7 × × × × ×

[33] 2018 √ 9 √ 6 √ √ × × ×

[12] 2017 √ 16 × 3 / √ × × ×

[54] 2017 × 11 × 9 × √ × √ ×

[29] 2017 √ 20 √ 5 √ × × × ×

[40] 2016 √ 11 × 2 × √ × × ×

[30] 2016 √ 16 √ 8 √ √ × × ×

[6] 2016 × 15 × 13 × √ × × ×

[19] 2016 √ 14 × 6 √ × × × ×

[41] 2016 √ 18 × 3 × √ × × √

[25] 2016 √ 17 × 4 √ √ × × ×

[26] 2016 √ 18 × 26 √ √ × × ×

[27] 2015 × 7 × 4 √ × × × ×

[31] 2015 √ 7 √ 1 √ √ × × ×

[38] 2015 √ 20 × 15 ? √ × × √

[32] 2014 √ 10 √ 11 × √ × × ×

[14] 2014 ? 9 × 5 √ √ × × ×

[52] 2013 × 41 × 1 √ × × × ×

[45] 2013 × 11 × 17 √ √ √ √ ×

[46] 2013 × 9 √ 2 × √ × × ×

[34] 2012 × 11 √ 2 × × × × ×

[47] 2012 √ 3 × 4 ? √ × × ×

[15] 2012 ? 10 × 4 ? √ × × ×

[53] 2012 √ 34 × 5 × × × × ×

[20] 2012 × 7 × 4 ? × × × ×

[48] 2011 √ 17 × 3 √ √ × × ×

[21] 2011 × 7 × 5 ? × × × ×

[42] 2011 ? 3 × 1 × × × × ×

[22] 2011 × 1 × 1 / × × × ×

[43] 2010 × 10 × 9 √ √ × × ×

[8] 2010 √ 3 × 1 / √ × × ×

[9] 2010 × 1 × 7 √ √ × × ×

[39] 2010 × 3 × 4 × × × × ×

[10] 2009 × 10 × 1 / × × × ×

[13] 2009 × 8 × 1 / √ × × ×

[11] 2008 × 3 √ 7 × × × √ ×

[16] 2008 ? 4 × 9 × × × × ×

[4] 2008 × 10 × 22 √ √ × √ ×

[17] 2007 × 6 × 3 × × × × ×

[44] 2007 × 8 × 6 × √ × × ×

Average/count

17 11.3 9 6.2 15 24 1 4 2

√= yes, ×= no, = not mentioned or not clear, /= does not apply. More specifically, if a study has tuned the parameters, it is considered as “√”, if the study

did not tuned the parame-ters, or only those of some of the models, it is marked “×”. “?” is used if the study does not mention the setting. “/” will be

used if the standard does not apply, e.g. the model in use may not require tuning.

Unless otherwise noted, the number of datasets refers to different projects. Within the same project, there might be different dataset versions.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 245 Copyright @ 2020 Authors

“AUC” refers to the area under the receiver operating characteristic curve. “H” refers to the H measure proposed in Hand’s paper.
“F test” refers to the Friedman test, and “post-hoc” refers to post-hoc Nemenyi test.

“correction” refers to situations where the statistical tests have been treated to correct normality assumption, or other bias.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 246 Copyright @ 2020 Authors

tests in use have been developed using a Frequentist approach. While much statistical science research

has been moving towards the Bayesian paradigm, the software defect prediction literature has not yet

entirely addressed this gap. Statistical tests such as ANOVA, the Friedman test and the Wilcoxon rank

sum test are considered as Frequentist hypothesis testing procedures. Unfortunately, frequentist tests

might not address the research needs. Researchers are interested in the power of the test, the probability

of whether two classifier performances are identical or not, from the observed data. The confidence level

does not link the probability to the observed data as such, but instead, provides a statement about the

random draw of the sample data in general. A confidence level of 95% asserts that 19 out of 20 times,

the estimated parameter might lie within the confidence interval of the collected sample, without

knowing whether it lies within the particular observed data sample or not. A Bayesian approach, on the

other hand, estimates the likelihood based on the observed data and calculates the posterior probability

that one classifier will outperform the other. Furthermore, a Bayesian test allows us to compute the

magnitude and uncertainty of the comparison. If one classifier is better than another, we know how strong

the relationship is. Likewise, if we cannot conclude one is better than the other, we know to what extent

they are identical, or namely “practically equivalent” [59]. While the Bayesian approach addresses some

shortcomings of its Frequentist counterpart, it should be considered as an alternative rather than the

panacea, since each paradigm has its own scope and limitations.

We summarize our literature analysis in Table 1. The inclusion rule takes into account the advancement

of our prior study [60]. We have considered major software engineering outlets and conferences.

Additionally, we have analyzed a number of review articles to broaden the horizon of the article search.

A wide range of intellectual contribution should be taken into consideration, including but not limited to

new classification methods, processing techniques, and tuning methods from various scholars.

However, although between 70 and 100 articles might deserve to be included [61, 62], it is impossible to

compare all of them for extensively. We will focus on the recent literature, since recent research benefits

from greater data availability and methodological advancement than older work. For instance, the

discussion of the problems of using Area under ROC curve only started around 2009 [51]. The same

observation might be made for data collection from open source platforms such as GitHub. Moreover,

journals often publish more content on this topic than conference publications, due to different word-

count limits and expectations for research output. Thus, we summarize what we consider a representative

list of publications.

On average, prior studies use 11.3 project datasets, and we observe that the number of datasets increases

over the years, thanks to the proliferation of open source projects and metric extraction tools. Researchers

identify and address data quality issues. Many studies address the class imbalance problem [4, 28, 29,

33]. Other studies do not, even though they mention the issue [12, 26]. The number of classifiers used is

6.2. This number is not considered large [4], because researchers tend to believe, in line with early results,

that the choice of classifiers does not impact performance [38]. About 40% of the listed studies tune the

model [25, 29] while others either do not [42, 53], or use default parameters [32, 39]. About 60% of the

studies adopt the AUC metric, but very few of them address its potential limits [45]. To evaluate model

performance, many studies use the t test [13, 26, 39] or the Scott-Knott test [38, 41], whose validity [4,

55, 57] has been questioned.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 247 Copyright @ 2020 Authors

2 Research methods

 Dataset collection

We have included the MDP project to evaluate classifier performance empirically

(http://openscience.us/repo/defect/). The MDP project contains a number of defect datasets

frommany NASA artifacts, e.g. control software for observers, and has been used in many research

articles[45]. While a popular choice for test datasets, discussions of data quality issues in the MDP

project have attracted concern [3]. The literature reports a number of data quality issues that may

jeopardize research outcomes, e.g. there are numerically identical variables, missing values,

implausible values. To address this issue, we adopted the approach in [3] to improve data quality.

While we retained the setup used in this prior study, we added one additional procedure to preprocess

the dataset.

Variables that are linear combinations of others may introduce a collinearity problem. While many

software defect papers [4] do not discuss this issue specifically, the collinearity problem might introduce

bias to the statistical model and influence the predictive outcome [2, 63]. We detected this problem using

the “findLinearCombos” function in the R package “Caret”[64] and removed redundant linear

combinations. We used a similar approach for datasets collected from the GitHub project.

While the MDP project is popular among researchers, public open source software repositories provide

many more opportunities for empirical testing. We also included software defect datasets collected from

GitHub [65]. This is an attractive data source, since commercial and/or confidential research projects

often do not release their datasets. A version control system with bug-fixed reports allows the SZZ

algorithm to automate the process of identifying software defects and constructing datasets [66]. It gives

researchers more possibilities to collect datasets as they wish.

We captured the bugs in the GitHub dataset at both class and file level. We used class-level bug datasets.

Investigating the file level could also be useful; however, a number of file-level datasets are limited in

size and bug cases. For instance, all file-level datasets in the project “Android-Universal- Image-Loader”

have fewer than 100 observations. Very small datasets cannot provide sufficient data for training and

testing classifiers; hence, we chose class level datasets, as they are larger than their file- level counterparts

are. In most software projects, one file contains exactly one class. However, multiple classes can appear

in one file. The reason for this is that in some files, the class structures are nested, and inner classes may

exist for various coding purposes and styles.

Unlike the MDP project, the GitHub project evolves over different versions, and thus has different

waves of datasets. Since the number of different versions is large, we only present an aggregated

average result here. The full result appears in the appendix.

We addressed the data imbalance problem by oversampling until the faulty class reached 20%, using

Adaptive synthetic sampling (ADASYN) algorithm[37], because the mean and median defect rate of

datasets that do not suffer from the imbalance problem is 17.8% and 18 % respectively; so roughly

20%. While the literature shows that a balanced class distribution may lead to good classification

results, a minority class ratio of 20% also yields promising results [67]. Another reason is that

empirically we do not expect the bug rate to be very high; so 20% would be a large enough number. It

http://openscience.us/repo/defect/
http://openscience.us/repo/defect/

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 248 Copyright @ 2020 Authors

would be very unlikely for 50% of the code in a dataset to be faulty. An overview of the datasets appears

in Table 2.TABLE 1

AN OVERVIEW OF THE DATASETS

MDP

Number of
observations

 Number of
variables

 Number of fault
observations

 Percentage of
fault

CM1

688

37

84 12.21%

JM1 19186 21 3518 18.34%

KC1 4192 21 650 15.51%

KC3 400 39 72 18.00%

MC1 18554 38 136 0.73%

MC2 254 39 88 34.65%

MW1 528 37 54 10.23%

PC1 1518 37 122 8.04%

PC2 3170 36 32 1.01%

PC3 2250 37 280 12.44%

PC4 2798 37 356 12.72%

PC5 34002 38 1006 2.96%

 GitHub (aggregated average)
Android-Universal-Image-

Loader 124.80 73.80 31.40 25.16%

BroadleafCommerce 1714.60 91.20 137.20 8.00%

MapDB 496.80 86.40 106.40 21.42%

antlr4 587.40 86.20 127.40 21.69%

ceylon-ide-eclipse 1469.00 87.50 200.00 13.61%

elasticsearch 4597.83 90.42 340.50 7.41%

hazelcast 2964.00 89.88 174.38 5.88%

junit 843.20 84.40 152.60 18.10%

mcMMO 217.40 73.80 40.40 18.58%

mct 2695.00 92.00 672.33 24.95%

neo4j 5793.00 91.00 848.67 14.65%

netty 1119.25 88.00 118.88 10.62%

orientdb 1828.60 90.60 154.80 8.47%

oryx 595.67 86.33 96.00 16.12%

titan 1086.50 88.00 226.00 20.80%

 Benchmarking classifiers

We included 17 classifiers in this study. As discussed in the literature review, the selection includes six

main classes of classifiers: Bayesian approaches, tree-based approaches, support vector machine

approaches, neural network approaches, boosting approaches, and others. We adopted the Matlab, R and

Weka implementation of those classifiers. Although classifiers with default parameter settings can

predict defective units, we fine-tuned them to increase their predictive performance [25]. We considered

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 249 Copyright @ 2020 Authors

the sameTABLE 3

AN OVERVIEW OF THE CLASSIFIERS

Classifier names Acronym Implementation Candidate models

Bagged multilayer perceptron artificial neural network BaggingModelANN Matlab 4

Boosted decision trees BoostingModelAdaBoostM1 Matlab 9

CART CARTModel Matlab 12

Logistic regression LRModel Matlab 1

Multilayer perceptron artificial neural network MLPModel Matlab 171

Random forest RFModelR R package "randomForest" 35

Ridge Regression RidgeRegressionModel Matlab 10

Linear support vector machine SVMModelLibLinear Matlab 29

SVM with radial basis kernel function SVMModelRbf Matlab 300

Alternating decision tree WEKAModelADT WEKA 5

Tree Augmented Naive Bayes WEKAModelBayesNetTAN WEKA 1

J4.8 WEKAModelJ48 WEKA 12

k-nearest neighbor WEKAModelKnn WEKA 8

Logistic model tree WEKAModelLMT WEKA 1

Naive Bayes WEKAModelNaiveBayes WEKA 1

Radial basis function neural network WEKAModelRBFNetwork WEKA 5

 Voted perceptron WEKAModelVP WEKA 1

classifier algorithm with a different parameter configuration as a different candidate model. For

example, we considered CART models with different parameter values for “minleaf” (the minimal

number of observations per tree leaf) as different candidate models. When testing a specific algorithm,

we assessed candidate models with different parameters using cross validation within the training set.

We used the candidate model with the best predictive performance for testing. We present an overview

of all classifiers in TABLE .

 Experimental setup

We split the datasets into training and testing sets using fivefold cross validation, to assess their predictive

accuracy. Within each fold, we used another internal five-fold cross validation for model selection, to

avoid the potential bias of training and testing models on the same dataset. We conducted this process to

find the best parameter configuration for each classifier. We assessed predictive outcome using the AUC

and the H measure. When calculating the H measure, we set the underlying Beta distribution parameters

to the constant value two. The Beta distribution function served as a weighting function to address the

shortcoming of the AUC metric, as is common in the literature [51, 60].

We evaluate the obtained results with average ranks first. For the top performing candidates, we did not

only use post-hoc tests but also compared the post-hoc results using Bayesian tests. More specifically,

we compared the top performing classifiers we compare them in a pairwise fashion manner. Classifier-

performance comparisons often violate the assumption that the samples are independent and identically

distributed (i.i.d). Bayesian tests are useful, since they build a hierarchical model based on the joint

distribution learned from the sample. Furthermore, the posterior probabilities (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖 ≫

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗), (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗) and (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑖 ≪ 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑗) estimate whether one

classifier outperforms another, or they are “practically equivalent,” meaning that we cannot empirically

conclude which is better. The “practically equivalent” situation happens when the mean difference of two

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 250 Copyright @ 2020 Authors

classifiers lies in a very small region, such as [-0.01, 0.01] [59, 68]. This region is also known as a region

of practical equivalence (rope) [69]. In other words, when the Bayesian hierarchical test results fall into

the “rope”, we consider the classifiers as practically equivalent. For our experimental setup, the 𝐴𝑈𝐶𝑟𝑜𝑝𝑒

= [−0.01, 0.01] as suggested in the literature [59, 69]. However, there is a lack of prior evidence with

regard to the H measure. After some experiments, we set 𝐻𝑟𝑜𝑝𝑒 =[−0.05, 0.05] , as such a configuration

is most stable when conducting Bayesian tests (https://github.com/BayesianTestsML). The reason for

the difference between the AUC and H metrics is that the variance of possible AUC values is much

smaller than the variance of the H measure, and thus should be adjusted differently for the “rope”.

3 Results and discussion
In this section, we first report the results of the machine learning models and statistical comparison in

section 4.1. In section 4.2, we report the findings of our study and discuss their differences from other

work. We discuss limitations and future work in section 4.3.

 Model results and statistical tests

We list the results of our experiments below. The GitHub project results are aggregated while the MDP

project results are not. We have retained the raw result of the MDP project to compare with prior

literature. The raw GitHub datasets generated too many observations and results to display in the paper.

We have included raw results of the GitHub projects at different times in the Appendix. TABLE 2 and

TABLE 3 report the AUC and H measure results of the MDP project, respectively.

TABLE 2
AUC RESULTS OF MDP DATASETS

 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Average
BaggingModelANN 0.984 0.737 0.863 0.955 0.992 0.948 0.966 0.981 0.994 0.955 0.986 0.981 0.945

BoostingModelAdaBoostM1 0.926 0.733 0.840 0.955 0.987 0.961 0.926 0.952 0.984 0.904 0.970 0.977 0.926

CARTModel 0.381 0.507 0.500 0.312 0.403 0.233 0.407 0.397 0.360 0.385 0.484 0.500 0.406

LRModel 0.854 0.707 0.809 0.866 0.929 0.868 0.833 0.882 0.970 0.837 0.923 0.960 0.870

MLPModel 0.977 0.770 0.919 0.954 0.991 0.981 0.920 0.981 0.992 0.979 0.984 0.986 0.953

RFModelR 0.960 0.947 0.950 0.992 0.952 0.990 0.942 0.982 0.996 0.986 0.994 0.988 0.973

RidgeRegressionModel 0.830 0.709 0.808 0.842 0.916 0.785 0.816 0.873 0.902 0.837 0.906 0.954 0.848

SVMModelLibLinear 0.797 0.708 0.801 0.818 0.934 0.875 0.803 0.860 0.906 0.833 0.896 0.954 0.849

SVMModelRbf 0.966 0.843 0.903 0.994 0.982 0.993 0.904 0.949 0.992 0.989 0.984 0.984 0.957

WEKAModelADT 0.974 0.765 0.887 0.967 0.991 0.933 0.994 0.977 0.986 0.927 0.986 0.986 0.948

WEKAModelBayesNetTAN 0.814 0.727 0.821 0.797 0.973 0.785 0.807 0.884 0.943 0.839 0.922 0.977 0.857

WEKAModelJ48 0.870 0.667 0.786 0.885 0.500 0.951 0.799 0.764 0.500 0.815 0.933 0.859 0.777

WEKAModelKnn 0.882 0.900 0.921 0.813 0.994 0.898 0.862 0.912 0.865 0.921 0.918 0.985 0.906

WEKAModelLMT 0.972 0.947 0.953 0.937 0.982 0.944 0.964 0.974 0.994 0.957 0.988 0.990 0.967

WEKAModelNaiveBayes 0.750 0.682 0.792 0.703 0.917 0.747 0.770 0.804 0.896 0.769 0.836 0.940 0.801

WEKAModelRBFNetwork 0.909 0.720 0.860 0.925 0.970 0.932 0.891 0.892 0.813 0.939 0.945 0.972 0.897

 WEKAModelVP 0.749 0.664 0.726 0.780 0.652 0.789 0.772 0.775 0.552 0.762 0.835 0.817 0.739

TABLE 3
H MEASURE OF MDP DATASETS

 CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Average
BaggingModelANN 0.802 0.136 0.322 0.821 0.504 0.777 0.701 0.698 0.727 0.603 0.750 0.389 0.603

BoostingModelAdaBoostM1 0.778 0.124 0.265 0.805 0.521 0.876 0.749 0.586 0.939 0.343 0.643 0.348 0.581

CARTModel 0.000 0.007 0.000 0.001 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.001

LRModel 0.292 0.107 0.212 0.442 0.239 0.574 0.396 0.285 0.265 0.212 0.443 0.289 0.313

MLPModel 0.828 0.187 0.570 0.853 0.637 0.898 0.703 0.846 0.868 0.809 0.870 0.477 0.712

RFModelR 0.830 0.766 0.755 0.890 0.727 0.928 0.803 0.791 0.960 0.838 0.877 0.825 0.833

RidgeRegressionModel 0.244 0.107 0.217 0.365 0.224 0.401 0.321 0.235 0.124 0.217 0.393 0.272 0.260

https://github.com/BayesianTestsML
https://github.com/BayesianTestsML

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 251 Copyright @ 2020 Authors

SVMModelLibLinear 0.250 0.107 0.216 0.387 0.134 0.615 0.268 0.219 0.064 0.179 0.326 0.251 0.251

SVMModelRbf 0.721 0.436 0.653 0.905 0.736 0.920 0.720 0.794 0.960 0.847 0.824 0.810 0.777

WEKAModelADT 0.820 0.139 0.361 0.796 0.693 0.829 0.915 0.753 0.950 0.524 0.761 0.412 0.663

WEKAModelBayesNetTAN 0.166 0.121 0.216 0.347 0.280 0.431 0.388 0.311 0.150 0.173 0.373 0.372 0.277

WEKAModelJ48 0.468 0.091 0.197 0.588 0.000 0.774 0.405 0.217 0.000 0.245 0.441 0.218 0.304

WEKAModelKnn 0.619 0.715 0.723 0.701 0.740 0.759 0.706 0.713 0.543 0.767 0.803 0.788 0.715

WEKAModelLMT 0.735 0.716 0.740 0.812 0.738 0.808 0.734 0.725 0.630 0.807 0.905 0.828 0.765

WEKAModelNaiveBayes 0.122 0.084 0.160 0.181 0.008 0.310 0.235 0.137 0.015 0.157 0.203 0.159 0.148

WEKAModelRBFNetwork 0.544 0.131 0.348 0.664 0.349 0.826 0.606 0.461 0.335 0.585 0.522 0.371 0.478

 WEKAModelVP 0.136 0.070 0.165 0.282 0.103 0.387 0.217 0.180 0.000 0.117 0.352 0.195 0.184

We summarize AUC and H measure results for the GitHub project in TABLE 4 and TABLE 5.

In terms of numerical values, the CART model performs the worst, even after parameter tuning. This

observation holds true for both the GitHub and MDP projects, and using either the AUC or H measure.

Another tree-based learner, the J4.8 classifier, has similar results with low AUC and H measures for both

projects. The logistic regression model performs relatively well under the AUC measure, but when

evaluated using the H measure, its ranking drops. While the AUC and H measure are strongly correlated

(correlation coefficient = 0.978 for MDP and 0.951 for GitHub), the H measure ranks the classifiers

somewhat differently from the AUC. In TABLE 6, we summarize the average ranks of the classifiers.

The classifier Bagged neural network (BaggingModelANN) tends to score lower using the H measure

than with the AUC. The opposite is true for the Logistic model tree (WEKAModelLMT) and Radial basis

function neural network (WEKAModelRBFNetwork), as they score higher in terms of H measure. This

outcome appears more often with the GitHub project than the MDP project.

We highlight the five top-performing classifiers in red. The random forest model (RFModelR) appears

to be the best model in terms of its ranks. “BaggingModelANN” and “MLPModel” also perform quite

well.

The Friedman tests performed over the GitHub and MDP project using the AUC and H measure show

that the differences are significant (all four p values << 0.001).

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 252 Copyright @ 2020 Authors

 TABLE 4

AUC RESULTS OF GITHUB
DATASETS

BaggingModelANN

BoostingModelAdaBoostM1

CARTModel

LRModel

MLPModel

RFModelR

RidgeRegressionModel

SVMModelLibLinear

SVMModelRbf

WEKAModelADT

WEKAModelBayesNetTAN

WEKAModelJ48

WEKAModelKnn

WEKAModelLMT

WEKAModelNaiveBayes

WEKAModelRBFNetwork
 WEKAModelVP

 Android Broadleaf MapDB antlr4 ceylon elasticsearch hazelcast junit mcMMO mct neo4j netty orientdb oryx titan Average 0.917 0.836

 0.950 0.961 0.908 0.863 0.855 0.939 0.820 1.000 0.906 0.871 0.852 0.879 0.971 0.902

0.776 0.828 0.927 0.962 0.915 0.845 0.848 0.930 0.792 0.999 0.899 0.863 0.863 0.854 0.973 0.885

0.156 0.353 0.129 0.147 0.329 0.386 0.400 0.171 0.355 0.069 0.289 0.308 0.342 0.250 0.143 0.255

0.890 0.725 0.904 0.946 0.802 0.806 0.767 0.904 0.755 0.993 0.822 0.806 0.767 0.825 0.946 0.844

0.902 0.792 0.933 0.955 0.895 0.831 0.831 0.931 0.802 1.000 0.844 0.852 0.837 0.841 0.969 0.881

0.937 0.829 0.937 0.969 0.919 0.868 0.856 0.940 0.842 0.999 0.873 0.873 0.862 0.878 0.972 0.904

0.895 0.822 0.898 0.937 0.866 0.816 0.796 0.910 0.723 0.978 0.865 0.827 0.811 0.837 0.939 0.861

0.875 0.799 0.899 0.894 0.875 0.768 0.793 0.858 0.780 0.942 0.826 0.788 0.811 0.850 0.889 0.843

0.917 0.788 0.926 0.953 0.883 0.788 0.793 0.941 0.780 0.999 0.853 0.821 0.828 0.866 0.952 0.873

0.939 0.825 0.955 0.968 0.892 0.847 0.838 0.934 0.799 0.999 0.889 0.874 0.859 0.874 0.972 0.898

0.880 0.820 0.947 0.963 0.906 0.832 0.831 0.925 0.820 0.999 0.887 0.841 0.846 0.862 0.972 0.889

0.907 0.660 0.905 0.952 0.776 0.638 0.647 0.829 0.722 0.992 0.746 0.751 0.719 0.798 0.950 0.799

0.887 0.794 0.895 0.939 0.894 0.818 0.800 0.930 0.769 0.996 0.853 0.818 0.827 0.835 0.953 0.867

0.911 0.779 0.927 0.948 0.856 0.829 0.820 0.904 0.790 0.999 0.856 0.858 0.828 0.837 0.967 0.874

0.866 0.773 0.885 0.929 0.861 0.776 0.776 0.875 0.756 0.934 0.832 0.728 0.802 0.804 0.892 0.833

0.879 0.761 0.923 0.965 0.893 0.774 0.780 0.929 0.726 0.997 0.774 0.795 0.788 0.842 0.953 0.852
0.845 0.751 0.897 0.916 0.841 0.683 0.734 0.881 0.747 0.972 0.735 0.768 0.768 0.816 0.905 0.817

TABLE 5
H MEASURE OF GITHUB DATASETS

 Android Broadleaf MapDB antlr4 ceylon elasticsearch hazelcast junit mcMMO mct neo4j netty orientdb oryx titan Average

BaggingModelANN 0.696 0.258 0.749 0.791 0.532 0.286 0.254 0.660 0.380 0.990 0.564 0.400 0.304 0.584 0.827 0.552

BoostingModelAdaBoostM1 0.494 0.256 0.712 0.822 0.558 0.220 0.201 0.682 0.386 0.996 0.535 0.385 0.252 0.504 0.827 0.522

CARTModel 0.006 0.000 0.003 0.005 0.021 0.001 0.000 0.002 0.008 0.003 0.001 0.001 0.000 0.004 0.006 0.004

LRModel 0.723 0.177 0.641 0.789 0.509 0.198 0.132 0.614 0.252 0.908 0.428 0.229 0.180 0.455 0.767 0.467

MLPModel 0.786 0.237 0.746 0.841 0.532 0.240 0.217 0.694 0.344 0.998 0.550 0.421 0.268 0.565 0.833 0.551

RFModelR 0.802 0.269 0.778 0.851 0.559 0.291 0.242 0.680 0.432 0.998 0.575 0.438 0.316 0.565 0.852 0.577

RidgeRegressionModel 0.670 0.240 0.678 0.746 0.442 0.196 0.172 0.577 0.308 0.803 0.395 0.293 0.235 0.531 0.688 0.465

SVMModelLibLinear 0.624 0.222 0.580 0.548 0.384 0.127 0.145 0.430 0.328 0.654 0.281 0.156 0.198 0.377 0.528 0.372

SVMModelRbf 0.755 0.238 0.723 0.820 0.545 0.213 0.171 0.700 0.351 0.980 0.518 0.330 0.248 0.509 0.766 0.524

WEKAModelADT 0.793 0.247 0.745 0.820 0.561 0.253 0.220 0.658 0.364 0.995 0.553 0.415 0.268 0.536 0.846 0.552

WEKAModelBayesNetTAN 0.704 0.251 0.778 0.839 0.579 0.195 0.195 0.644 0.425 0.997 0.548 0.303 0.245 0.499 0.836 0.536

WEKAModelJ48 0.732 0.187 0.650 0.740 0.495 0.148 0.110 0.505 0.306 0.901 0.419 0.298 0.193 0.463 0.779 0.462

WEKAModelKnn 0.705 0.215 0.690 0.716 0.520 0.221 0.179 0.607 0.298 0.972 0.528 0.306 0.239 0.456 0.753 0.494

WEKAModelLMT 0.740 0.225 0.756 0.811 0.551 0.228 0.217 0.663 0.345 0.994 0.540 0.389 0.252 0.517 0.825 0.537

WEKAModelNaiveBayes 0.701 0.126 0.595 0.655 0.373 0.137 0.081 0.439 0.266 0.635 0.282 0.180 0.122 0.382 0.517 0.366

WEKAModelRBFNetwork 0.763 0.220 0.717 0.819 0.513 0.198 0.162 0.664 0.301 0.930 0.444 0.324 0.222 0.524 0.770 0.505
 WEKAModelVP 0.589 0.190 0.635 0.657 0.428 0.148 0.112 0.497 0.269 0.760 0.379 0.195 0.152 0.390 0.595 0.400

We conducted the post-hoc analysis to examine whether there are individual differences between

classifiers. The critical distance is calculated as indicated in equation 1. Recall the number of datasets in

MDP and GitHub are 12 and 15 respectively. As mentioned earlier, we did not include all 17 classifiers

in the post-hoc tests since classifiers such as CART performed poorly on all datasets. Including CART

would “inflate” the classifier count 𝑘, the test statistics 𝑞𝛼 and perhaps the critical distance. We give a

numerical example below.

𝑐
𝑑

𝑐
𝑑

𝑀𝐷𝑃 = 3.458√17(17+1) = 7.13

6×12

= 3.458√17(17+1) = 6.38

𝐺𝑖𝑡𝐻𝑢𝑏
6×15

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 253 Copyright @ 2020 Authors

When using all classifiers to compute the critical distance, the “biased” results suggest that only

differences in ranks larger than 7.13 for MDP and 6.38 for the GitHub project should be considered

significant.TABLE 6

AVERAGE RANKS

 GitHub MDP

 AUC h AUC h

BaggingModelANN 2.7 4.7 4.2 6.7
BoostingModelAdaBoostM1 4.6 6.1 6.7 6.8
CARTModel 17.0 17.0 17.0 16.8

LRModel 12.3 11.9 10.8 11.3

MLPModel 6.1 4.1 4.2 4.0

RFModelR 2.4 1.7 2.8 1.8

RidgeRegressionModel 10.3 10.8 12.2 12.2

SVMModelLibLinear 12.0 14.3 12.4 12.7

SVMModelRbf 7.7 7.0 4.3 3.2

WEKAModelADT 3.1 4.1 4.5 5.0

WEKAModelBayesNetTAN 5.4 5.9 10.7 11.7

WEKAModelJ48 13.7 11.8 12.8 12.5

WEKAModelKnn 9.5 10.0 7.8 5.6

WEKAModelLMT 8.0 5.9 3.8 3.8

WEKAModelNaiveBayes 13.5 15.1 14.5 15.5

WEKAModelRBFNetwork 10.4 8.7 8.9 8.3

 WEKAModelVP 14.3 14.0 15.3 15.1

Under such test conditions, none of the classifiers can be clearly identified as the “best.”

If we limit our scope to five classifiers, since we picked the five top-performing classifiers from each

category in TABLE 6, the test results change:

𝑐𝑑

𝑀𝐷𝑃′ = 2.728√5(5+1) = 1.76
6×12

𝑐𝑑

𝐺𝑖𝑡𝐻𝑢𝑏′ = 2.728√5(5+1) = 1.58
6×15

We can conclude using this approach that the random forest model outperforms the rest in terms of H

measure for the GitHub project. For the rest of the comparison, although the random forest model

ranks higher, we cannot statistically conclude that it outperforms the rest, because the difference in

ranks is smaller than the critical distance.

While the above testing procedure has often been used in the literature [4], its power is often doubted,

and a Bayesian alternative is proposed [59]. We include a full report of comparisons of the various

classifiers in the Appendix. TABLE 7 summarizes the comparative results of the top-performing

classifiers

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 254 Copyright @ 2020 Authors

TABLE 7

PAIRWISE COMPARISON USING THE BAYESIAN TESTS

Classifier 1 Classifier 2 AUC_MDP H_MDP AUC_GitHub H_GitHub

BaggingModelANN BoostingModelAdaBoostM1 pe Pe pe pe
BaggingModelANN MLPModel pe MLPModel pe pe

BaggingModelANN RFModelR pe RFModelR pe pe

BaggingModelANN SVMModelRbf pe SVMModelRbf pe pe

BaggingModelANN WEKAModelADT pe Pe pe pe

BaggingModelANN WEKAModelBayesNetTAN BaggingModelANN BaggingModelANN pe pe

BaggingModelANN WEKAModelLMT pe WEKAModelLMT pe pe

BoostingModelAdaBoostM1 MLPModel MLPModel MLPModel pe pe

BoostingModelAdaBoostM1 RFModelR RFModelR RFModelR pe pe

BoostingModelAdaBoostM1 SVMModelRbf SVMModelRbf SVMModelRbf pe pe

BoostingModelAdaBoostM1 WEKAModelADT pe Pe pe pe

BoostingModelAdaBoostM1 WEKAModelBayesNetTAN BoostingModelAdaBoostM1 BoostingModelAdaBoostM1 pe pe

BoostingModelAdaBoostM1 WEKAModelLMT pe WEKAModelLMT pe pe

MLPModel RFModelR pe Pe pe pe

MLPModel SVMModelRbf pe Pe pe pe

MLPModel WEKAModelADT pe Pe pe pe

MLPModel WEKAModelBayesNetTAN MLPModel MLPModel pe pe

MLPModel WEKAModelLMT pe Pe pe pe

RFModelR SVMModelRbf pe Pe pe pe

RFModelR WEKAModelADT pe RFModelR pe pe

RFModelR WEKAModelBayesNetTAN RFModelR RFModelR pe pe

RFModelR WEKAModelLMT pe Pe pe pe

SVMModelRbf WEKAModelADT pe SVMModelRbf pe pe

SVMModelRbf WEKAModelBayesNetTAN SVMModelRbf SVMModelRbf pe pe

SVMModelRbf WEKAModelLMT pe Pe pe pe

WEKAModelADT WEKAModelBayesNetTAN WEKAModelADT WEKAModelADT pe pe

WEKAModelADT WEKAModelLMT pe Pe pe pe

WEKAModelBayesNetTAN WEKAModelLMT WEKAModelLMT WEKAModelLMT pe pe

pe = Practically
equivalent

According to TABLE 7 indicates that we cannot identify a “best” classifier when

using results from the GitHub study. The top performers selected from TABLE 6

are evaluated as “Practically equivalent.” When observing the test results of the

MDP study, the random forest model no longer outperforms the MLP model in

terms of H measure. This means that although the random forest model is ranked

higher than the others, there is insufficient evidence that it outperforms the rest.

In general, Bagged multilayer perceptron artificial neural network, Multilayer

perceptron artificial neural network, Random forest, and Alternating decision tree

all perform quite well in the experiments but in no specific order. While we have

no clear view of the best classifier, statistical tests still indicate significant

differences between classifiers. Classifiers such as CART, Logistic regression,

Ridge Regression, linear SVM, Naïve Bayes, Radial basis function neural

network, and Voted perceptron are not as effective as the Bagged multilayer

perceptron artificial neural network , Multilayer perceptron artificial neural

network , Random forest and Alternating decision tree classifiers, as indicated by

the Bayesian test results.

 Comparison with other studies

The research results update our findings in a prior study [4] as we identify a list

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 255 Copyright @ 2020 Authors

of classifiers that are worse than others. Other studies have also reported that the

classifiers can be divided into two groups with regard to their performance [38].

Such a “divide” in classifier performance can be observed in the MDP project

and the GitHub projects. The benchmark study by Lessmann et al. has been cited

over seven hundred times, and a quick search of the cited papers yields many

interesting citations. Quite often researchers propose one specific use of a

machine learning model in software defect prediction, such as Naïve Bayes [10],

and use the work of Lessmann et al. [4] to justify their choice of classifier(s)

[53]. Most frequently, authors reason that since Lessmann et al. did not find one

best classifier, it does not matter which classifier we use. A few researchers

perceive the work of Lessmann et al. differently. For instance, Bennin et al. state

that “Lessman et al. [38] showed that RF was significantly better than 21

other prediction models.”[29], although Lessmann et al. do not make any such

assertion [4]. This study shows that, although it is still unclear which classifier

performs the best, researchers should justify the use and validity of their choice

of classifier [48]. They should also justify the reasoning behind their

experimental setup and reporting [70].

A prior study reported that different empirical model validation methods

introduce different levels of estimation bias, and that Single repetition holdout

performs poorly as a validation method [41]. In some studies, when the

researchers change the test setting from single repetition holdout to cross

validation, the AUC score of certain classifiers changes drastically, and hence

their ranking also changes. Yu et al. reported that Naïve Bayes performs better

than Logistic regression and KNN when using a 50% training set. The same study

also reported that when using 10-fold cross validation, Logistic regression and

KNN outperform Naïve Bayes [12]. One cause of such confounded results is that

the number of candidate models is limited. More extensive testing may avoid

such bias. In our study, we observe that the CART model, which predicted better

than random [4] (AUC > 0.5) in the previous study when using the holdout

method, performs poorly when fivefold cross validation is used. The average

ranks of the CART model and the Voted perceptron model (“WEKAModelVP")

are consistent, thanks to the large pool of classifiers used.

The GitHub datasets complement those of the MDP project interestingly. The

GitHub results differ from those of the MDP project: a classifier that performs

well on the GitHub project does not necessarily perform well on the MDP

project. The finding might be interesting to software developers if they find their

work similar to the open source projects on GitHub. The GitHub datasets include

many different types of projects, such as data engines, business information

systems, language processing tools, and games [6]. On the other hand, linking a

specific software development project to the MDP datasets may not be easy. This

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 256 Copyright @ 2020 Authors

is one benefit of using open source platforms as a data source for our study. As

the MDP datasets are still being used in much research work, researchers and

practitioners should consider whether the research findings derived from MDP

are generalizable to their own software.

Another benefit of using open source software is that we can understand data

quality problems better, since we have access to the source code. Prior research

observed the data quality issue in MDP projects [3], but the reason for the

problem was unclear. When the datasets contain duplicated observations,

researchers do not have sufficient information to conclude whether these two

observations represent two code modules with identical values, or a replication

error. This is not the case with open source code, since each data observation is

linked to its class and/or file.

 Limitations and future studies

In this paper, we primarily focus on the binary classification of software

defects. However, software defects can be predicted in many other ways.

Future studies should focus on other predictive tasks, such as time taken to fix

a bug [71]. In a time series setting, alternative measures should be considered

to enrich the findings.

The literature has reported that class imbalance handling methods, e.g.

sampling methods, will increase predictive accuracy [29, 33]. While in our

study we consider sampling to improve data usability, as indicated in 3.1, we

do not tune the sampling technique extensively to increase AUC or H metric

scores, for instance by testing the class ratio.

4 Conclusion
We conducted our study using 17 classifiers on 27 datasets. Our work extends

the literature [4, 61, 73] and includes a number of new dimensions. Our

benchmarking study shows that software defect prediction should be assessed

using extensive evaluation metrics and statistical tests. We discover that the

random forest model (RFModelR) and neural network model (MLP) achieved

quite good results. However, neither AUC nor H measure values lead to a

significant difference in classifier performance. Meanwhile, it is quite complex

to train and fine-tune these models. Therefore, the benefit of using complex

models rather than simpler approaches is unclear [74]. If the predictive accuracy

of a complex model such as the random forest is similar to that of simple models

such as those from the WEKA library, then it might be better to choose a simpler

model for practical reasons. Additionally, we notice that the AUC and H

measures report different classifier performances. While the AUC measure is

widely used in many studies [4, 24, 25, 45], an alternative metric can provide

additional insights.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 257 Copyright @ 2020 Authors

Stakeholders in software development are interested in using data science to

make better decisions about their code. It is vital for researchers and practitioners

to understand that advances in data science could affect their decisions.

Particularly in the case of software defect prediction, our study shows that

benchmarking study results should consider multiple dimensions, including the

nature of datasets, predictive models, and evaluation procedures. It is critical to

take advantage of new research findings to continue to improve defect prediction

results.

Benchmarking study results depend heavily on the choice of statistical

procedures. In addition to the choice of classifiers, datasets and evaluation

metrics, the statistical test procedure might also affect the research findings. The

Frequentist and Bayesian paradigms analyze the data in different ways. Each

paradigm has its own strengths and weaknesses. The Bayesian paradigm

addresses many problems in the Frequentist approach. For example, it reports

posterior probability on empirical data, and relaxes the assumptions of statistical

tests. The Bayesian approach is computationally intensive when there is a large

number of datasets and classifiers. The underlying Bayesian Hierarchical model

might not be a perfect choice to model the mean difference of classifier

performances. It often takes several iterations and research attempts to find the

best underlying model structure in a Bayesian setting [75]. While the Bayesian

approach criticizes the Frequentist approach with its i.i.d. assumptions, the

Bayesian approach also makes a moderate number of assumptions about

parameter distribution [59]. When designing the tests, one

REFERENCES

[1] C. Frischknecht. (2017, March 11th). $1.1 Trillion Impacted by Software Defects: A Testing Fail?

Available: https://www.tricentis.com/blog/2017/02/02/1-1-trillion-in-assets-impacted-by-software-

defects-a-software-testing-fail/

[2] H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," Journal of the Royal

Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301-320, 2005.

[3] M. Shepperd, Q. Song, Z. Sun, and C. Mair, "Data quality: Some comments on the nasa software defect

datasets," IEEE Transactions on Software Engineering, vol. 39, no. 9, pp. 1208-1215, 2013.

[4] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking Classification Models for Software

Defect Prediction: A Proposed Framework and Novel Findings," IEEE Transactions on Software

Engineering, vol. 34, no. 4, pp. 485-496, 2008.

[5] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, "Software fault prediction metrics: A

systematic literature review," Information and Software Technology, vol. 55, no. 8, pp. 1397-1418, 2013.

[6] Z. Tóth, P. Gyimesi, and R. Ferenc, "A public bug database of GitHub projects and its application in bug

prediction," in International Conference on Computational Science and Its Applications, 2016, pp. 625-638:

Springer.

[7] T. Fawcett, "An introduction to ROC analysis," Pattern recognition letters, vol. 27, no. 8, pp. 861-874, 2006.

[8] Y. Zhou, B. Xu, and H. Leung, "On the ability of complexity metrics to predict fault-prone classes in

object-oriented systems," Journal of Systems and Software, vol. 83, no. 4, pp. 660-674, 2010.

[9] Y. Singh, A. Kaur, and R. Malhotra, "Prediction of fault-prone software modules using statistical and

machine learning methods," International Journal of Computer Applications, vol. 1, no. 22, pp. 8-15, 2010.

[10] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, "On the relative value of cross-company and

within-company data for defect prediction," Empirical Software Engineering, vol. 14, no. 5, pp. 540-578,

2009.

[11] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Haesen, "Mining software

http://www.tricentis.com/blog/2017/02/02/1-1-trillion-in-assets-impacted-by-software-defects-a-software-testing-fail/
http://www.tricentis.com/blog/2017/02/02/1-1-trillion-in-assets-impacted-by-software-defects-a-software-testing-fail/

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 258 Copyright @ 2020 Authors

repositories for comprehensible software fault prediction models," Journal of Systems and Software, vol. 81,

no. 5, pp. 823-839, 2008/05/01/ 2.

