

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 277 Copyright @ 2020 Authors

Survey on software defect detection methods

Submitted By: Goutami Kar,Asst.Prof in Raajdhani Engineering College, Bhubaneswar

Manjog Padhi, Asst. Prof in Raajdhani engineering College, Bhubaneswar

Kumari Anamika, Asst. Prof in Raajdhani Engineering College, Bhubaneswar

Yogamaya Mohapatra, Asst.prof in Capital Engin

ABSTRACT

One of the most exhaustive and pricey part of embedded software development is consider as the process of finding and fixing

the defects (Ebert and Jones, 2009). Due to complex infrastructure, magnitude, cost and time limitations, monitoring and

fulfilling the quality is a big challenge, especially in automotive embedded systems. However, meeting the superior product

quality and reliability is mandatory. Hence, higher importance is given to V&V (Verification & Validation). Software testing

is an iDue to recent technology advancement, the requirements of hardware and software applications changes. Software

applications are designed by writing codes for different tasks. These codes may contain defects which may lead to buggy

software development. Detecting faults in software increases software quality. As the software project size increases, defect

detection methods will play an important role to support developers as well as to speed up time to market with more reliable

software products. Software testing is an important part of software V&V, which is focused on providing accurate functionality

and long-term reliability of software systems. Software testing requires much effort, cost, infrastructure and expertise

as the development. Therefore, it is required to have a good testing strategy for any industry with high software development

costs. In this paper, we develop a better approach for software defect detection by using soft computing based machine learning

techniques which helps to predict defects.

Keywords: Defect detection, Soft computing, Verification, Validation.

Introduction

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 278 Copyright @ 2020 Authors

part of software V&V, which is focused on promising accurate functionality and long-term reliability of software systems.

Simultaneously, software testing requires much effort, cost, infrastructure and expertise as the development (Lemos et al.,

2015). The costs and efforts elevate in safety critical software systems. Therefore, it is essential to have a good testing strategy

for any industry with high software development costs.

Nowadays, the growth of the software industry is huge and more sophisticated. Therefore, anticipating the reliability of the

software is an important task in software development process (Roy et al., 2014). A software bug is a defective behavior of

the software system which arises due to definite and possible violation of security policies during the application runtime. It

is mainly caused by improper development or erroneous specification of the software system (Ghaffarian and Shahriari, 2017).

According to ref. of Abaei and Selamat (2014), analysis and prediction of defects are essential to serve three important

requirements. First, it helps in assessing the progress of the project and assists in scheduling testing process by the project

manager. Second, it helps in investigating the quality of the product. Lastly, it improves the reliability and functionality of the

product. The fault-prone modules can be identified by distinct metrics, which have been reported by the previous fault

prediction. Some of the crucial information, such as number of faults, location, severity, and distribution of defects are

extracted to enhance the efficiency of testing process. It further helps in improving the software quality of the upcoming

software release. The two main advantages of software fault prediction are, enhancement of the overall testing process by

emphasizing on fault-prone modules, identification of the refactoring candidates which are rendered as most likely to undergo

fault (Catal, 2014).

The models used for Software engineering cost and schedules, their estimation, etc., are implemented for several reasons

which are,

• Budgeting: It is the first and foremost implication, but it is not the only purpose. The most important factor is “overall

accuracy of the system”.

• Project planning and control: It is yet another critical feature to offer cost and scheduling estimations with respect to

modules, stage and process.

• Tradeoff and risk analysis: It involves the supplementary capability to focus on the project scheduling and costs

involved in the project decisions (staffing, scoping, tools, reuse, etc.).

• Software improvement investment analysis: In involves the additional cost and efforts required for other strategies,

such as recycling, tools, inventory, process maturity, etc.

In software programming, defect analysis and prediction can decisively determine potential bugs in the software and

onstrained resources to those modules of the software framework, which are more liable to be affected by bugs. Constructing

a defect prediction models for a software framework is helpful for numerous of developmental or maintenance activities, for

example, software quality assessment and monitoring quality assurance (QA).

The significance of defect prediction has propelled various scholars and engineers to characterize distinctive kinds of

models or indicators that portray different parts of programming quality. Most research generally evaluates this issue as

supervised learning problems and the results of those defect prediction models is dependent on the previous defect

information. To be precise, a predictor model is built based on the training data obtained from the previous defects seen in

past software releases. This defect predictor’s can be used to defect bugs in upcoming software projects or to cross-validate

on the same data set (He et al., 2012), also known as Within-Project Defect Prediction (WPDP). Zimmermann et al. (2009)

expressed that the performance of defect prediction models can be better, if there are adequate quantity of information

accessible to train the models. Nevertheless, this type of information is not available for freshly started projects. Therefore,

high precision in defect prediction process in such projects become extremely difficult, sometimes implausible. However,

there are little open-source information on defect datasets, such PROMISE (Wang and Li, 2010), Apache (Ghotra et al.,

2015) and Eclipse (Ryu et al., 2016), which can be used to train the defect predictors.

To overcome such challenges, few engineers and scholars have made an attempt to apply the predictors from one project,

on to a different one (Li et al., 2017; Lu et al., 2015). This process of using information between different projects to construct

defect models is generally termed as Cross-Project Defect Prediction (CPDP). It involves the process of implementing a

predictor model in a project, which was built for some other project.

The choice of training samples relies upon the distributional attributes of datasets. Few experimental examinations

assessed the practical advantages of cross- project defect predictors with various programming metric, such as, process

measurements, static code metrics, system metrics, etc., (Li et al., 2017; Lu et al., 2015), and how to uses such metrics in a

complementary way (Zimmermann et al., 2009). Even though, several attempts are established for the implementation of

CPDP, it is still not well developed, and suffers from poor performance in practice (Rahman et al., 2012). Besides, no

definitive information is available on how the defect predictors amongst WPDP and CPDP are sanely selected, when there

are no proper historical data on the project. In general, several type of software metrics, for example, history of code change,

static code metrics, network me

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 279 Copyright @ 2020 Authors

Fig. 1. Software defect prediction techniques

All current defect prediction models are constructed on the sophisticated amalgamation of programming metrics, with which

a defect predictor can generally attain good level of precision. Nevertheless, few feature selection algorithms such as principal

component analysis (PCA), can greatly lower the amount of data dimensions (He et al., 2015; Wu et al., 2017; Wang et al.,

2013), they still result in a time- consuming process. Can a compromise solution be found, which can attain a tradeoff between

cost and accuracy? As it were, would we be able to build a generic universal predictor with hand few of metrics, such as Lines

of Code (LOC), which can attain accurate results in comparison to other complex prediction models? Apart from choosing a

proper software metric, there are numerous classifiers available at disposal, such as Naive Bayes (Zhang et al., 2016), J48

(Song et al., 2006), Support Vector Machine (SVM) (Xia et al., 2016), Logistic Regression (Li et al., 2014), and Random Tree

(Staron and Meding, 2008), etc. Apart from these, there are a few improved classifiers (Rana et al., 2013) and hybrid classifiers

(Gondra, 2008) which are known to effectively improve classification results.

 Software Defect Prediction Techniques
To foresee the quantity of flaws anticipated that would be found in a product module/venture or to group which modules

are likely to be imperfect, Programming Defect Prediction (PDP) systems are utilized. Various distinctive strategies have

been utilized for characterization

/anticipating absconds; they can be extensively gathered into methods that are utilized to foresee if or not a given programming

ancient rarity is probably going to contain a deformity (Classification) and procedures utilized for foreseeing anticipated that

number of imperfections would be found in a given programming antique (Prediction) and Fig. 1 outlines normally utilized

programming imperfection forecast methods clustered by the reason –fault check expectation or defect inclined arrangement.

In an investigation by Staron and Meding (Rajbahadur et al., 2017), professional views were utilized and their execution

contrasted with other information based models. Author’s former works establishes the long term analytical power of

SRGMs (Software Reliability Growth Models) within the automotive realm indicating their utility in analyzing or predicting

fault and consistency. To categorize the software modules which are likely to be defective or to analyze the compactness of

software defect, various software modules related to code features like complexity, size etc., has been utilized effectively.

Techniques that utilize code and modify measurements as sources of info and utilize machine learning strategies for

categorizing and predicting have additionally been examined by Iker Gondra (Kim et al., 2011) and Xie et al. (2011).

Pertinence of different strategies for programming imperfection forecasts over the life cycle periods of programming

advancement and the attributes of every strategy are shown in Table 1.

 Techniques for Defect Classification

Software defect classification is another important technique of defect prediction. These models strive to identify fault-

prone software modules using variety of software project and product attributes. In general, defect classification models are

implemented at lower granularity levels, more predominantly at file and class level. Hence,

ML based

Model

Classific

ation

Logistic

Regression

Software Reliability Growth

Model

Constructive Quality

Model

Multivariate

Regression

Analogy based

Predictions
White

Box

D

efect

predict

ion

techni

ques

Casual

Models

Expert

Opinions
Predic

tion

Capture/Recapture

Analysis

Black

Box

Software Reliability Growth

Model

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 280 Copyright @ 2020 Authors

Table 1. Different strategies for programming imperfection forecasts
Method Input data required Advantages and limitations

Causal

Models

Inputs about estimated size,

complexity, qualitative inputs

on
planned testing and quality
requirements

Causal models biggest advantage is that they can be

applied very early in the development process. Possible
to analyse what-if scenarios to estimate output quality
or level of testing needed to meet desired quality goals.

Expert

Opinions

Domain experience (software

development, testing and quality

assessment).

This is the quickest and easiest way to get the

predictions (if experts are available). Uncertainty of

predictions is high and forecasts may be subjected to

individual biases

Analogy

Based

Predictions

Project characteristics and

observations from large number of

historical projects.

Quick and easy to use, the current project is

compared to previous project with most similar

characteristics. Evolution of software process,

development tool chain may lead to inapplicability or
large prediction errors.

Constructive
Quality

Model

Software size estimates, product,
personal and project attributes; defect

removal level.

Can be used to predict cost, schedule or the residual

defect density of the software under development.
Needs large effort to calibrate the model.

Correlation
Analysis

Number of defects found in given

iteration; size and test effort

estimates can also be used in

extended models.

This method needs little data input which is available

after each iteration. The method provides easy to use

rules that can be quickly applied. The model can also be

used to identify modules that show higher/lower levels
of defect density and thus allow early interventions

Regression

Models

Software code (or model) metrics as

measure of different characteristics

of software code/model; Another

input can be the change metrics.

Uses actual code/models characteristic metrics which

means estimates are made based on data from actual

software under development. Can only be applied when

code/models are already implemented and access to the

source code/model is available. The regression model

relationship between input characteristics and output

can be difficult to interpret –do not map causal

relationship

Machine

Learning

based

models

Software code (or model) metrics as

measure of different characteristics

of software code/model; Another

input can be the change metrics.

Similar to regression models, these can be used for

either classification (defective/not defective) or to

estimate defect count/densities. Over time as more data

is made available, the models improvise on their

predictive accuracy by adjusting their value of

parameters (learning by experience). While some

models as Decision Trees are easy to understand others

may act like a black box (for example Artificial Neural
Networks) where their internal working is not explicit

Software

Reliability

Growth

Models

Defect inflow data of software under

development (life cycle model) or

software under testing.

Can use defect inflow data to make defect predictions

or forecast the reliability of software based system.

Reliability growth models are also useful to assess the

maturity/release readiness of software close to its

release. These models need substantial data points to
 make precise and stable predictions

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 281 Copyright @ 2020 Authors

the software products which are flagged as defect-prone can be prioritized according to their severity for more rigorous

verification and validation activities.

Logistic Regression
A software module can be categorized as defect-prone or not, on the basis of logistic regression. Much like the multivariate

regression, the classification of software modules is done by using several variety of process and product metrics are employed

as predictor variables. Zimmermann, et al. (Köksal et al., 2011) worked on the principle of logistic regression to categorize

file/packages in Eclipse project as defect prone.

 Machine Learning Models

Some popular machine learning techniques uses statistical algorithms and data mining techniques, which is helpful for

predicting and classifying defects. Such techniques are identical to regression approaches that use same type of independent

variables. On the upside, the machine learning algorithms are dynamic in nature, and they progressively enhance the overall

prediction and classification technique.

 General Process of Software Defect Prediction

To build an efficient prediction model, we should have proper data on defects and metrics, which can be accumulated from

software development efforts to use as the learning set. Thus, there is tradeoff between its prediction performance on

additional data sets and how well this model fits in its learning set. Therefore, the performance of the model is assessed by

the comparison of the predicted defects of the modules in a test, against the actual defects witnessed (Hewett, 2011).

 General Defect Prediction Process
Labeling: An appropriate defect data must be collected for the purpose of training a prediction model. This step generally

involves the extraction of instances and labeling the data items (True or False).

Extracting features and creating training sets: The extraction of features for prediction labels of instances is performed in

this stage. Few common features for defect prediction are keywords, complexity metrics, deviations, and structural

dependencies. By consolidating the labels and highlights of instances, a training set is generated which is used by the machine

learning algorithms to develop a forecast model.

Building prediction models: The prediction models can be built with the help of a training set, implemented on the general

machine learning algorithms, such as Bayesian Network or Support Vector Machines (SVM). Based on the learned data, the

model can classify and label the test instances as TRUE or FALSE.

Assessment: The assessment of a prediction display is done on the basis of testing dataset collection and training set. The

labels of the training dataset are used to build the prediction model, which is later evaluated by comparing the prediction and

real labels. The training sets and testing sets are separated using 10-fold cross-validation technique.

2. RELATED WORKS

As indicated by Catal and Diri (2009), defect prediction models in software programming have become one of the significant

research areas since 1990. In just two decades, the total amount of research papers in this area had increased two fold. A wide

range of procedures and methodologies were utilized for defect prediction models, for example, decision trees (Selby and

Porter, 1988) neural network system (Hu et al., 2007), Naïve Bayes (Menzies et al., 2004), case-based reasoning (Khoshgoftaar

et al., 1997), fluffy logic (Yadav and Yadav, 2015) and the artificial immune recognition framework technique in Catal and

Diri (2007).Menzies et al. (2004) carried out an experiment derived from the open-source NASA datasets with the help of few

data mining techniques. The results were later evaluated with the help of balance parameter, probability of false alarm and

probability of detection. Prior to the implementation of the algorithm, the authors have used the log-transformation with Info-

Gain filters. They further assured that performance of Naïve Bayes in terms of fault prediction was better than J48 algorithm.

The authors have further contended that since a few models with low accuracy performed well, implementing such models as

a dependable parameter for performance assessment was not suggested. Okutan and Yıldız (2014), estimated the probabilistic

influential relationships between software metrics and probability of defect, with the help of Bayesian networks. Apart from

the metric used in Promise data repository, two other metric were defined in this proposed research work, which were LOCQ

for the source code quality and NOD for the number of developers. These metrics can be derived by examining the source

code repositories of the targeted Promise data archives. Once the model was complete, the marginal probability of defect of

the system can be understood, along with the set of influential metrics, and the correlation between defects and metrics.

Likewise, dictionary based learning algorithms were more popular in the field of software defect prediction. Jing et al.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 282 Copyright @ 2020 Authors

(2014) implemented software defect prediction models on the principle of machine learning techniques. The similarity

between different software modules can be exploited to represent a small proportion of few modules with the help of some

other modules. Furthermore, the coefficients of the pre-defined dictionary contains the historical software data, which are

large inadequate. With the help of the qualities of the metrics extracted from the open-source programming modules, the

researchers learn numerous dictionaries, including but not limited to, defective-free module, defective module, total

dictionary, sub-dictionaries, etc. The researchers have also considered the problem of misclassification cost, as it usually

imposes greater risk than other defective-free ones. Along these lines, we present a cost-sensitive discriminative dictionary

learning (CDDL) technique for software defect classification and prediction.

The representative studies in software defect prediction are shown in Table 2. Over the past decade, several attempts were

made to build efficient prediction models. Process metrics and source code (Rahman et al., 2012) are some of the widely

studied metrics. Process metrics were derived from the software archives, for example, bug tracking systems, version control

systems, etc., which keep track of all development histories. Process metrics evaluates numerous characteristics of software

programming process such as, ownership of source code files, changes of source code, developer interactions, etc. The source

code metric determines the intricate should the source code be.

Table 2. Representative studies software defect prediction
Type Categories Representatives

 Sorce code (Jing et al., 2014), Process (Churn (Kim et al., 2007), (Ghotra et
al., 2015), Change (Kamei et al., 2010), Entropy (Zhang et al., 2016),

Metrics

Popularity (Roy et al., 2014), Authorship (He et al., 2015), Ownership (Catal,

2014), MIM (Hewett, 2011), Network measure (Okutan and Yıldız, 2014),

(Peters et al., 2013), (Khoshgoftaar et al., 2010), Antipattern (Shin et al.,

2010)

Within/Cross
Algorithm/Model

Classification, Regression, Active/Semi-supervised learning (Hu et al., 2007),
(Bosu et al., 2014), BugCache (Xie et al., 2011)

 Finer prediction
granularity

Change classification (Gondra, 2008), Method level-prediction (Song et al.,
2006)

Preprocessing

Feature selection/Extraction (Walden and Doyle, 2012), (Kim et al., 2007),
Normalisation (Jing et al., 2014), (Catal and Diri, 2009), Noice handling

(Rajbahadur et al., 2017), (Morrison et al., 2015)

Cross

Transfer learning
Metric compensation (Brereton et al., 2007), NN filter (Moshtari and Sami,
2016), TNB (Khoshgoftaar et al., 1997), TCA + (Catal and Diri, 2009)

 Feasibility Decision Tree (Catal and Diri, 2009), (Xia et al., 2016)

more complex source code was more likely to be infected by bugs. Several studies have emphasized the significance of

process metrics for defect prediction (Zhang et al., 2016; Fenton and Neil, 1999; Kamei et al., 2010).

The prediction models built by the machine learning algorithms have the ability to detect the probability of bugs or defects

in the source code. Few research works have mplemented latest machine learning algorithms such as active/semi-supervised

learning algorithms, which are known to enhance prediction performance (Li et al., 2012; Zhang et al., 2017). BugCache

algorithm was suggested by Kim et al., which uses the locality information of previous defects and maintains a list of source

code files or modules, which were more likely to be faulty (Kim et al., 2007). BugCache algorithm uses machine learning

techniques for building defect prediction models which uses non- statistical model. This entirely different from the other

defect prediction models. It also fine tunes the prediction granularity. It attempts to find defects at various levels, such as,

class, file, package, component, system. Few recent experiments have demonstrated that defects can be found at module

level or method level, or change level (Koru and Liu, 2005). The developers can be benefited by the finer granularity model,

as they can minimize the scope of source code, which must be inspected. Thus, preprocessing techniques are also an

important part of defect prediction studies. Prior to the implementation of defect prediction model, few techniques are

applied, such as normalization (Menzies et al., 2004), feature selection (Catal and Diri, 2009), noise handling (Khoshgoftaar

and Rebours, 2007),

etc.

Several authors have also emphasized on cross-project fault prediction. Majority of these experiments were portrayed and

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 283 Copyright @ 2020 Authors

directed inside the prediction setting, which suggests that the forecast models were constructed and executed within the same

project. In spite of this, it was challenging for few new projects, which did not contain any vital information about the historical

data about the developmental process. Few of the popular representative approaches for cross defect prediction were Nearest

Neighbour (NN) Filter (Zhang et al., 2017), metric compensation (Watanabe et al., 2008), Transfer Naive Bayes (TNB) (Ma

et al., 2012), and TCA + (Nam et al., 2013).

 Within-Project Defect Prediction

Catal and Diri (2009) has conducted an investigation on over 90 software defect prediction research works, which were

published between the vicinity of 1990 and 2009. He reviewed these papers on the basis of the performance evaluation

metrics, learning algorithms, experimental outcomes, datasets, etc. As indicated by this review, the author expressed that a

large portion of these research works were based on utilizing the method-oriented metrics and prediction-models. Therefore,

they were largely dependent on the machine learning procedures, and Naive Bayes techniques, which were regarded as a

popular machine learning techniques for supervised prediction tasks.

Hall et al. (2011) carried out an investigation on the metrics, such as model contexts, modeling algorithms, independent

variables, etc., and characterized their effects on the performance of defect prediction models, based on the 208 research

works. Their outcomes demonstrated that rudimentary modeling systems, for example, Logistic Regression and Naive Bayes,

portrayed better performance. Additionally, the performance was further enhanced by the combination of independent

variables. The results are greatly improved by the application of feature selection on these combinations. The authors contend

that there was considerable amount of defect prediction models, in which certainty was conceivable. However, more

examinations which implemented a reliable technique have witnessed a comprehensive context, performance, and

methodology. Most of these research works were reviewed w.r.t

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 284 Copyright @ 2020 Authors

two systemic literature surveys that were led with regards to WPDP. Nevertheless, they overlooked the fact that few of these

research works were particularly new, and they normally have restricted or deficient information to train a proper prediction

model for defect forecasting. Thus, a few researchers have started to work their way towards CPDP.

 Cross-Project Defect Prediction

The primary research on CPDP was performed by Briand et al. (2000), who connected models based on an open- source

venture (i.e., Xpose) to another (i.e., Jwriter). Despite the fact that the anticipated imperfection recognition probabilities were

not reasonable, the defect- prone class positioning was precise. They additionally approved that such a model performed

superior to anything the irregular model and beat it regarding class size. Zimmermann et al. (2009) led a large-scale

investigation on information versus province versus process, and found that CPDP was not generally fruitful (21/622

expectations). They additionally detected that CPDP was not proportioned amongst internet explorer and Firefox. CPDP

utilizing fixed code attributes in the view of 10 projects and even gathered from PROMISE archive was investigated by Turhan

et al. They suggested a closest-neighbor sifting strategy to channel through the insignificances in cross-venture information.

In addition, they examined the situation where models were developed from a combination of inside and cross-venture

information, and checked for any enhancements to WPDP in the wake of including the information from different undertakings

or projects. They presumed that when there was restricted venture chronicled information (e.g., 10% of recorded information),

combined project estimates were reasonable, as they executed and additionally within-project forecast models.

Rahman et al. (2012) led a cost-delicate examination of the viability of CPDP on thirty eight arrivals of nine extensive

Apache Software Foundation (ASF) ventures, by contrasting it with WPDP. Their detections uncovered that the cost-touchy

cross-project estimation execution was not more regrettable than the inside-venture forecast execution, and was significantly

superior to arbitrary expectation execution. To assist cross-company learning in contrast with the state of the art Peters et al.

(2013) acquainted a new filter called Burak filter. The outcomes uncovered that their method could assemble sixty-four percent

more valuable indicators than both cross-company and within-company approaches in view of Burak channels, and exhibited

that cross-organization fault estimate could be connected ahead of schedule in a venture's lifecycle. He et al. (2015) directed

three tests on similar informational indexes utilized as a part of this examination to approve training information from different

projects can give worthy outcomes. They additionally suggested a way to deal with naturally choosing appropriate training

information for ventures or projects without neighborhood information.

 Herbold (2013) suggested a few methodologies in view of forty-four informational collections from fourteen open- source

ventures regarding training data selection for CPDP. A few portions of their informational collections are utilized here in

our paper. The outcomes exhibited that their choice procedures enhanced the realized progress rate essentially, though the

nature of the outcomes was as yet unfit to contend with WPDP. The survey uncovers that earlier examinations have mostly

explored the possibility of CPDP and the decision of preparing information from their tasks. Yet moderately little

consideration was given to experimentally investigating the execution of a forecaster in light of a disentangled metric set

from the viewpoints of exertion and-cost, precision and simplification. Besides, next to no was thought about whether the

forecasters made with basic or least programming metric subsets acquired by wiping out some unimportant and repetitive

highlights can accomplish adequate outcomes.

 Software Metrics

A wide range of software models are regarded as features, which can be utilized for defect prediction, to enhance overall

quality of the software programming. Simultaneously, various correlations are made among numerous software metrics to

review which metric offers good level of performance. Shin and Williams (2013) examined whether source code and

programming histories were discriminative and detect weak codes among sophisticated, code agitate, and parameters

followed by the designer. It was discovered that 24 of the 28 metrics were discriminative for both Linux and Mozilla Firefox

kernel. By utilizing all the three kinds of metrics, these models predicted more than 80% of the potential weaknesses in the

files within under 25% false positives for the two activities. Marco et al. (2010) led three trials on five frameworks with

process metrics, source code metrics, previous defect data, entropy of changes, and so forth. They found that the best

performance can be obtained by the modest process metrics, which were marginally better than entropy and churn of source

code metrics.

Zimmermann et al. (2009) utilized social network parameters extracted from dependency relation between software

programming on Windows Server 2003 to predict which elements were more vulnerable to defects. With respect to

predicting defects, the experimental results have shown that the performance of network metrics was better than source code

metrics. Tosun et al. (2011) conducted experiments on five public datasets to replicate and verify their outcomes from two

distinct levels of granularity. The outcomes have shown that network metrics were more appropriate for detecting defects

for large-scale and complicated models, even though their performance in smaller models were not much impressive. Premraj

and Herzig (2011) reproduced the Zimmermann and Nagappan's work to conduct further evaluation of the generality of these

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 285 Copyright @ 2020 Authors

results. However, the results were found to be consistent

Table 3. Comparative analysis of classification based techniques for software defect

prediction

Authors and
publication

year

Objective

Methodology

Key findings

Conclusion

Roy et al.

(2014)

Software

reliability
prediction

Feed forward and

recurrent neural
network

Genetic algorithm is

used for training the
neural network

Better prediction of

software defects

Ghaffarian

and Shahriari

(2017)

Survey of SDP

techniques

Data mining and

machine learning

techniques for SDP

Data mining and ML

techniques are good for

early defect prediction

and vulnerability

An extensive review

which shows

advantages and
disadvantages of DM
and ML techniques

Catal and Diri

(2009)

Fault prediction

Artificial immune

system and random

forest approach for

classification

Significant Feature

selection can improve

the performance

Comparative

performance where it

shows that Random

forest achieves better

accuracy

Wang and

Li (2010)

Software defect

prediction for

improving the
quality

Naïve Bayes

classification model

Multi- variants Gauss

Naive Bayes (MvGNB)

used for reducing the
complexity

MvGNB achieves

better performance

when compared with
J48 classifier

Yadav and

Yadav

(2015)

Different artifact

and defect

prediction in
software
engineering

Fuzzy logic

technique

Phase-wise computation

along with fuzzy logic

classification

It can be used for

classifying the defect

types

Okutan and

Yıldız (2014)

Software defect

prediction and

level of defect

Feature extraction

and Bayesian

classification

technique for SDP

Significant feature

extraction and

relationship between

software metrics and
 defects.

It can be used for both

supervised and

unsupervised learning

with the original work. In any case, regarding the array of datasets, code metrics were more suitable for experimental

investigations on open-source programming ventures.

Radjenovic' et al. (2013) grouped 106 papers on defect prediction with respect to context properties and metrics. hey

discovered that the amount of process metrics, source code metrics, and object-oriented metrics, were 24%, 27%, and 49%,

respectively. Chidamber and Kemerer’s (CK) uite metrics were most frequently used. In comparison to complexity metrics

and traditional size, the object-oriented and process metrics were more efficient. Thus, in comparison to static code metrics,

the process metrics were more proficient in predicting post-release defects. On the basis of these research works, a comparative

review was presented in Table 3, which gives details on techniques used, results, and strengths of individual works. The

classification based techniques are presented first.

Zimmermann et al. (2011) examined the likelihood of detecting the presence of vulnerabilities and defects in binary

modules of a popular software product (Microsoft Windows Vista). The researchers have used classical metrics which were

implemented in past research works for defect prediction. Initially, correlations was computed which exists between the

metrics and amount of defects per binary module. The Spearman’s rank correlation was used for this purpose. The results

revealed that there was a noteworthy connection among classical metrics and the number of vulnerabilities. Another research

was led to determine the prediction capabilities of these metrics. For this purpose, a five groups of classical metrics (i.e.,

dependency, coverage, coverage, organizational, churn) were inspected using binary Logistic Regression. Williams and

Meneely (Meneely et al., 2008), examined the connection between software vulnerabilities and developer-activity metrics.

The developer-activity metrics consists of number of commits made to a file, number of developers who have modified the

codes in the source program, amount of geodesic paths which contains a file in the contribution network. The research was

carried out on three open-source software projects. The assembled informational in a given research work contains a label

which suggest if the source code file was patched or not. The version control logs would disclose the developer- activity

metrics. With the help of statistical correlation analysis, the researchers have confirmed the existence of statistical correlation

for every metric with the given quantity of vulnerabilities. However, the correlation was not very strong.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 286 Copyright @ 2020 Authors

by using Bayesian network with tenfold cross-validation, as the predictive model.

Walden and Doyle (2012) have led a study to inspect the correlation among software metric and vulnerabilities in 14

different popular open source web applications during 2006 and 2008, for example, Mediawiki, WordPress. The researchers

implemented static analytical tools, such as, PHP CodeSniffer, Fortify Source Code Analyzer. With the help of this tool, they

have estimated various metrics in source code repositories of these web applications, such as, source-code size, nesting

complexity, static analysis vulnerability density (SAVD), Security Resources Indicator (SRI), etc. Williams and Shin (2008),

conducted an experiment to check if the conventional defect prediction models, which are built on the principle of code-churn

metrics and complexity, were any help in predicting the fault vulnerability. The experiment was carried out on Mozilla Firefox

with a fault history metric, 5 code churn metrics, and 18 complexity metrics. With various classification techniques for the

fault prediction, the researchers have concluded that the results were almost identical.

Shin et al. (2010) carried out an intense research to check if the vulnerability prediction was affected by the code- churn

and developer-activity (CCD) and complexity. In regard to this, the researchers have conducted experiments on two open-

source projects. The analysis was performed on over 28 CCD software metrics, which also consists of 3 code-churn metrics,

14 complexity metrics, and 11 developer-activity metrics.

The authors have used the Welch’s t-test to assess the discriminative power of the metrics. For both the projects, the test

hypotheses were supported by at least 24 of 28 metrics. For the purpose of evaluation of predictive power of the metrics, the

authors have tested numerous classification techniques. They have discussed the result form just one technique, as the

performance was similar. To verify the predictive capacity of the model, the authors have validation on next-release, where

numerous releases were in progress. Apart from that, they have also performed cross- validation, where only a single release

would be in progress. Moshtari and Sami (2016) pointed out three important constraints of vulnerability prediction models

of previous research works. Therefore, they presented a new technique to predict the potential location of the defects in the

software. It is accomplished by complexity metrics by resolving the limitations of previous studies. For the purpose of

detecting software vulnerabilities, the researchers have proposed a semi-automatic analysis framework. The output from this

framework is used as vulnerability information, which was known to provide more comprehensive details about the

vulnerabilities in software, as explained by the authors. This research had examined both cross-project and within- project

fault prediction, with the help of accumulated

information from over five different open-source projects.

Bosu et al. (2014) conducted a similar experiment, in which they investigated more than 260,000 code review requests

from over 10 different open source projects. Subsequently, they were able to identify more than 400 vulnerable code changes,

with the help of three-stage semi- automated process. The main objective was to detect the characteristics of vulnerable code

changes, and developers who might cause such vulnerabilities. Some key discoveries of this study include:

1. The probability of fault elevates if the changes made in the codes are high.

2. Changes are made by less experienced developers increases the chances of defects.

3. The chances of defects are higher in new files, in comparison to modified files.

To recognize constraints which are responsible for vulnerabilities, Perl et al. (Brereton et al., 2007) examined the impacts

of utilizing the meta-information enclosed in code sources close by code –metrics. The initiators declare the way that

programming develops incrementally, and most open-source projects utilize adaptation control techniques, subsequently,

constraints define normal units to check for vulnerabilities. With this intention, the creators accumulate a dataset containing

170,860 confers from sixty six C/C ++ GitHub projects, including 640 vulnerability contributing commits (VCCs) plotted

to significant CVE IDs. The creators select an arrangement of code-beat and designer-interest metrics, and in addition GitHub

meta- information from various extensions (creator, document, commit and project) and concentrate these highlights for the

accumulated dataset. To distinguish VCCs from unbiased commits, the creators assess their recommended technique, named

VCC Finder, which utilizes a Support Vector Machine (SVM) classifier based on this dataset.

To analyze the execution of foreseeing vulnerable programming mechanisms, in light of programming metrics against

text-extracting procedures, Walden et al. (2014) played out an investigation. With this thought, the creators initially

developed a manually-built dataset of vulnerabilities assembled from three vast and well known open-source PHP web

applications (Moodle, PhpMyAdmin, Drupal), comprising of two hundred and twenty three vulnerabilities. As an endowment

to the investigation group, this dataset is presented. An arrangement of twelve code unpredictability metrics was chosen for

this examination in order to estimate vulnerability in the light of programming metrics. For content mining, every PHP source

file was tokenized. Unwanted tokens are either transferred (punctuations, comments, string, numeric literals, etc.) or

terminated. A count was kept on the frequencies of final tokens. The numerical feature-vectors are built from the textual

tokens of each PHP source file, using the popular “bag-of-words” technique.

Morrison et al. (2015) explains that defect prediction models which are implemented by the Microsoft teams, are different

from the vulnerability prediction models (VPMs). To clarify this disparity, for two fresh releases of the Microsoft Windows

OS the researchers have made an attempt to reproduce a VPM technique,

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 287 Copyright @ 2020 Authors

Table 4. Uniqueness and few advantages of each work

Authors Metrics Granularity
Within/Cross-

project Vulnerability

Zimmerman et al.

(2011)

Code churn, coverage,

dependency,

complexity ,
organizational

Binary modules

Within project

Public advisories

Meneely et al.
(2008) Developer activity Source file Within project Public advisories

 Code complexity and
security resources Source file Within project

Tool-based
defection

Walden and Doyle
(2012)

Complexity, fault-
history, code churn Source file Within project Public advisories

Yonghee et al.

(Shin and Williams,

2011)

Code complexity,

dependency network
complexity and

execution complexity

Source file

Within project

Public advisories

Shin and Williams
(2008)

Complexity, code-churn,
developer activity Source file Within project Public advisories

Shin et al. (2010)
Unit complexity,

coupling

Source file

both

Self-developed
detection

framework

Moshtari and Sami
(2016)

Code churn, developer
activity Code commits Within project Public advisories

Bosu et al. (2014) Developer activity Code commits Within project Public advisories

Perl et al. (Brereton

et al., 2007)

Code churn, developer
activity, GitHub

Metadata

Within project

Public advisories

Walden et al. (2014) Code complexity Source file Both Public advisories

Morrison et al.

(2015)

Code churn, complexity,
coverage,

dependency,

organizational

Binary module

Within project

Public advisories

Younis et al. (2016)
Code

complexity,

information flow,
 functions, Invocations.

Functions

Within project

Public advisories

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 288 Copyright @ 2020 Authors

Younis et al. (2016) made an attempt to detect the attributes of code, which contains defects that was more ikely to be

susceptible. Since they commenced the study, they were able to recognize over 183 defects from the Linux kernel and Apache

HTTPD web server projects. It must be noted that these projects contained 82 exploitable vulnerabilities. The researchers have

chosen over 8 software metrics from 4 groups, in order to represent these ulnerabilities. They had used Welch’s t-test to

investigate the discriminative power of each metric. Furthermore, the researcher examined if there is a combination of these

metrics which can be exploited as predictors for few defects, wherein, 3 diverse feature selection techniques and 4

classification techniques were verified.

In the previous section, a review was presented on various recent researches in the area of defect prediction models based

on software metrics. Table 4 presents the summary of all the research works reviewed in this section and also tabulates the

uniqueness and few advantages of each work.

3. APPLICATIONS OF DEFECT PREDICTION

One of significant objectives of defect prediction models is efficient utilization of available resources for assessing and

testing programming modules. Nevertheless, there is only a hand few of contextual analyses which use defect prediction

models (Lewis, 1999). Thus, Rahman et al. (2012) led most of their investigation on cost-viability. Lewis (1999) pioneered

a recent contextual investigation directed by Google, which compares the BugCache and Rahman's technique, with respect

to the amount of closed bugs (Peters et al., 2013). The outcomes have indicated that the designers favored Rahman's

technique.

In any case, the defect prediction models do not give any advantages to the developers. In a recent survey, Rahman et al.

(2012) demonstrated that defect prediction models could be useful to organize potential warnings discovered by the bug

finders, for example,

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 289 Copyright @ 2020 Authors

organize or choose appropriate test cases. In regression testing, performing all the test cases are not financially feasible, and

consumes large amount of time as well. Therefore, it is best to choose proper test cases, which investigates the potential

faults in the system (Lessmann et al., 2008). The results of the defect prediction models can provide an idea on the potential

bugs and their severity, which can be exploited to select and prioritize the test cases. On the basis of previously reviewed

works, it is obviously that the area of defect prediction has more to offer, and hence, it is in its early stages. It can be

concluded with few of the future improvements and limitation, which can be

extracted from past research works.

• A factual limitation in the area of defect prediction models is that the bugs and weaknesses are few in number in the given

datasets. In data mining and machine learning algorithms, this limitation is termed as imbalance class data. This imbalance

can create a greater drop in overall performance of the algorithms. However, there are few methods to overcome this

issue (Khoshgoftaar et al., 2010). Furthermore, few research works were focused on achieving the same, with random

under-sampling the majority class. This is regarded as a critical problem which should not be overlooked.

• Moshtari et al. (2016) has implemented a semi- automatic system for fault identification, rather than a data from public

repositories and fault databases (example: NVD). Thus, in comparison to other techniques, this system resulted in better

recall and precision values. This could pave the way for more intense research in the future.

• There are only few research works on the cross-project studies in the area of defect prediction. Therefore, it can be

regarded as a field of future enhancement. The cross-project fault prediction models are not well researched in the context

of defect prediction models. There are additional concerns in the Cross-project prediction models which are induced due

to distribution of data in the training set, which can differ largely among themselves. Such variations can greatly degrade

the performance of machine learning algorithms and statistical-analysis techniques. This limitation can be overcome by

a descendant of the machine-learning algorithm, known as “inductive transfer” (or “transfer learning”) techniques. About

the implementation of these techniques are well documents has in software defect prediction studies (Catal and Diri,

2009).

• Majority of the fault prediction techniques offered poor performance. This is mainly due to the use of traditional

software metrics, which are not considered as the appropriate indicators of software defects. Morrison et al. (2015) has

discussed bout this situation. Later on, characterizing security-oriented metrics, for example, the Security Resources

Indicator (SRI), which was proposed by Doyle and Walden (2012) this is another territory for future investigations.

• The use of deep-learning techniques for defect prediction is not well explored. It has emerged as a new area of machine-

learning algorithm which is made impressive accomplishments in few application specific domains. Furthermore, it is

increasing gain more popularity from scholars and professionals (Jiang et al., 2008). Yang et al. (2015) proposed a

technique based on deep-learning methods for just-in-time software defect prediction. This laid the foundation for

another area of research for future improvements.

4. CONCLUSION

This survey paper helps the researchers to study about software defects and software defect prediction techniques. To

implement the data pre-processing technique; data cleaning, data normalization and data discretization will be performed in

data mining. For feature extraction and selection to implement of new approach, to implement of evolutionary computation

and optimization technique for best feature selection and to implement machine learning classification techniques for bug

classification. An improved approach consists of data pre-processing low computation cost, complex model, software defect

prediction comparative analysis and improved classification performance of the system.

REFERENCES

Abaei, G., Selamat, A. 2014. A survey on software fault detection based on different prediction approaches. Vietnam Journal

of Computer Science, 1, 79–95.

Bosu, A., Carver, J.C., Hafiz, M., Hilley, P., Janni, D. 2014, November. Identifying the characteristics of vulnerable code

changes: An empirical study. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering, 257–268. ACM.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M. 2007. Lessons from applying the systematic literature

review process within the software engineering domain. Journal of systems and software, 80, 571–583.

Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V. 2000. Exploring the relationships between design measures and software

quality in object-oriented systems. Journal of systems and software, 51, 245–273.

Catal, C., Diri, B. 2007, February. Software defect prediction using artificial immune recognition system. In Proceedings of

the 25th conference on IASTED International Multi-Conference: Software Engineering 285–290. ACTA Press.

Catal, C., Diri, B. 2009. A systematic review of software fault prediction studies. Expert systems with applications, 36,

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 290 Copyright @ 2020 Authors

7346–7354.

Catal, C., Diri, B. 2009. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault

prediction problem. Information Sciences, 179, 1040–1058.

Catal, C., Diri, B. 2009. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault

prediction problem. Information Sciences, 179, 1040–1058.

Catal, C. 2014. A comparison of semi-supervised classification approaches for software defect prediction. Journal of

Intelligent Systems, 23, 75–82.

D'Ambros, M., Lanza, M., Robbes, R. 2010, May. An extensive comparison of bug prediction approaches. In 2010 7th IEEE

Working Conference on Mining Software Repositories (MSR 2010), 31–41. IEEE.

Ebert, C., Jones, C. 2009. Embedded software: Facts, figures, and future. Computer, 42, 42–52.

Fenton, N.E., Neil, M. 1999. A critique of software defect prediction models. IEEE Transactions on software engineering, 25,

675–689.

Ghaffarian, S.M., Shahriari, H.R. 2017. Software vulnerability analysis and discovery using machine- learning and data-

mining techniques: A survey. ACM Computing Surveys (CSUR), 50, 56.

Ghotra, B., McIntosh, S., Hassan, A.E. 2015, May. Revisiting the impact of classification techniques on the performance of

defect prediction models. In Proceedings of the 37th International Conference on Software Engineering-Volume 1, 789–

800. IEEE Press.

Gondra, I. 2008. Applying machine learning to software fault-proneness prediction. Journal of Systems and Software, 8, 186–

195.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S. 2011. A systematic literature review on fault prediction performance

in software engineering. IEEE Transactions on Software Engineering, 38, 1276–1304.

He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical study on software defect prediction with a simplified metric set.

Information and Software Technology, 59, 170–190.

He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical study on software defect prediction with a simplified metric set.

Information and Software Technology, 59, 170–190.

He, P., Li, B., Ma, Y., He, L. 2013. Using software dependency to bug prediction. Mathematical Problems in Engineering.

He, Z., Shu, F., Yang, Y., Li, M., Wang, Q. 2012. An

investigation on the feasibility of cross-project defect prediction. Automated Software Engineering, 19, 167–
199.

Herbold, S. 2013, October. Training data selection for cross- project defect prediction. In Proceedings of the 9th International

Conference on Predictive Models in Software Engineering 6. ACM.

Hewett, R. 2011. Mining software defect data to support software testing management. Applied Intelligence, 34, 245–257.

Hu, Q.P., Xie, M., Ng, S.H., Levitin, G. 2007. Robust recurrent neural network modeling for software fault detection and

correction prediction. Reliability Engineering & System Safety, 92, 332–340.

Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating fault prediction models. Empirical Software Engineering, 13,

561–595.
Jing, X.Y., Ying, S., Zhang, Z.W., Wu, S.S., Liu, J. 2014,

May. Dictionary learning based software defect prediction. In Proceedings of the 36th International Conference on

Software Engineering, 414–423. ACM.

Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.I., Adams, B., Hassan, A.E. 2010, September. Revisiting common

bug prediction findings using effort-aware models. In 2010 IEEE International Conference on Software Maintenance, 1–

10. IEEE.

Khoshgoftaar, T.M., Rebours, P. 2007. Improving software quality prediction by noise filtering techniques. Journal of

Computer Science and Technology, 22, 387–396.

Khoshgoftaar, T.M., Ganesan, K., Allen, E.B., Ross, F.D., Munikoti, R., Goel, N., Nandi, A. 1997, November. Predicting

fault-prone modules with case-based reasoning. In Proceedings the eighth international symposium on software reliability

engineering, 27–35. IEEE.

Khoshgoftaar, T.M., Gao, K., Seliya, N. 2010, October. Attribute selection and imbalanced data: Problems in software defect

prediction. In 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, 1, 137–144. IEEE.

Kim, S., Zhang, H., Wu, R., Gong, L. 2011, May. Dealing with noise in defect prediction. In 2011 33rd International

Conference on Software Engineering (ICSE). 481–490. IEEE.

Kim, S., Zimmermann, T., Whitehead Jr, E.J., Zeller, A. 2007, May. Predicting faults from cached history. In Proceedings

of the 29th international conference on Software Engineering, 489–498. IEEE Computer Society. Köksal, G., Batmaz, İ.,

Testik, M.C. 2011. A review of data mining applications for quality improvement in

manufacturing industry. Expert systems with
Applications, 38, 13448–13467.

Koru, A.G., Liu, H. 2005. Building effective defect- prediction models in practice. IEEE software, 22, 23–29. Lemos,

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 291 Copyright @ 2020 Authors

O.A.L., Ferrari, F.C., Silveira, F.F., Garcia, A. 2015. Experience report: Can software testing education lead to more

reliable code?. In 2015 IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE), 359–369.

Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008. Benchmarking classification models for software defect prediction: A proposed

framework and novel findings. IEEE Transactions on Software Engineering, 34, 485– 496.

Lewis, N.D. 1999. Assessing the evidence from the use of SPC in monitoring, predicting & improving software quality.

Computers & Industrial Engineering, 37, 157– 160.

Li, K., Chen, C., Liu, W., Fang, X., Lu, Q. 2014. Software defect prediction using fuzzy integral fusion based on GA-FM.

Wuhan University Journal of Natural Sciences, 19, 405–408.

Li, M., Zhang, H., Wu, R., Zhou, Z.H. 2012. Sample-based software defect prediction with active and semi- supervised

learning. Automated Software Engineering, 19, 201–230.
Li, Z., Jing, X.Y., Zhu, X., Zhang, H., Xu, B., Ying, S. 2017.

On the multiple sources and privacy preservation issues for heterogeneous defect prediction. IEEE Transactions on Software

Engineering.

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G. 2015. Transfer learning using computational intelligence: a survey.

Knowledge-Based Systems, 80, 14–23.

Ma, Y., Luo, G., Zeng, X., Chen, A. 2012. Transfer learning for cross-company software defect prediction. Information and

Software Technology, 54, 248–256.

Meneely, A., Williams, L., Snipes, W., Osborne, J. 2008, November. Predicting failures with developer networks and social

network analysis. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software

engineering 13–23. ACM.

Menzies, T., DiStefano, J., Orrego, A., Chapman, R. 2004. Assessing predictors of software defects. In Proc. Workshop

Predictive Software Models.

Mısırlı, A.T., Çağlayan, B., Miranskyy, A.V., Bener, A., Ruffolo, N. 2011, May. Different strokes for different folks: A case

study on software metrics for different defect categories. In Proceedings of the 2nd International Workshop on Emerging

Trends in Software Metrics, 45–

51. ACM.

Morrison, P., Herzig, K., Murphy, B., Williams, L. 2015, April. Challenges with applying vulnerability prediction models. In

Proceedings of the 2015 Symposium and Bootcamp on the Science of Security, 4. ACM.

Moshtari, S., Sami, A. 2016, April. Evaluating and comparing complexity, coupling and a new proposed set of coupling

metrics in cross-project vulnerability prediction. In Proceedings of the 31st Annual ACM Symposium on Applied

Computing, 1415–1421. ACM.

Nam, J., Pan, S.J., Kim, S. 2013, May. Transfer defect learning. In 2013 35th International Conference on Software

Engineering (ICSE), 382–391. IEEE.

Okutan, A., Yıldız, O.T. 2014. Software defect prediction using Bayesian networks. Empirical Software Engineering, 19, 154–

181.

Peters, F., Menzies, T., Marcus, A. 2013, May. Better cross company defect prediction. In Proceedings of the 10th Working

Conference on Mining Software Repositories, 409–418. IEEE Press.

Premraj, R., Herzig, K. 2011, September. Network versus code metrics to predict defects: A replication study. In

2011 International Symposium on Empirical Software Engineering and Measurement, 215–224. IEEE.

Radjenović, D., Heričko, M., Torkar, R., Živkovič, A. 2013. Software fault prediction metrics: A systematic literature review.

Information and software technology, 55, 1397– 1418.

Rahman, F., Posnett, D., Devanbu, P. 2012, November. Recalling the imprecision of cross-project defect prediction. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 61. ACM.

Rajbahadur, G.K., Wang, S., Kamei, Y., Hassan, A.E. 2017, May. The impact of using regression models to build defect

classifiers. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR) 135–145. IEEE.

Rana, R., Staron, M., Mellegård, N., Berger, C., Hansson, J., Nilsson, M., Törner, F. 2013, June. Evaluation of standard

reliability growth models in the context of automotive software systems. In International Conference on Product Focused

Software Process Improvement, 324–329. Springer, Berlin, Heidelberg.

Roy, P., Mahapatra, G.S., Rani, P., Pandey, S.K., Dey, K.N. 2014. Robust feedforward and recurrent neural network based

dynamic weighted combination models for software reliability prediction. Applied Soft Computing, 22, 629–637.

Ryu, D., Choi, O., Baik, J. 2016. Value-cognitive boosting with a support vector machine for cross-project defect prediction.

Empirical Software Engineering, 21, 43–71.

Selby, R.W., Porter, A.A. 1988. Learning from examples: generation and evaluation of decision trees for software resource

analysis. IEEE Transactions on Software Engineering, 14, 1743–1757.

Shin, Y., Williams, L. 2008, October. An empirical model to predict security vulnerabilities using code complexity metrics.

Dogo Rangsang Research Journal UGC Care Journal

ISSN : 2347-7180 Vol-10 Issue-03 No. 01 March 2020

Page | 292 Copyright @ 2020 Authors

In Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement,

315–317. ACM.

Shin, Y., Williams, L. 2011, May. An initial study on the use of execution complexity metrics as indicators of software

vulnerabilities. In Proceedings of the 7th International Workshop on Software Engineering for Secure Systems, 1–7.

ACM.

Shin, Y., Williams, L. 2013. Can traditional fault prediction models be used for vulnerability prediction?. Empirical Software

Engineering, 18, 25–59.

Shin, Y., Meneely, A., Williams, L., Osborne, J.A. 2010. Evaluating complexity, code churn, and developer activity metrics

as indicators of software vulnerabilities. IEEE Transactions on Software Engineering, 37, 772– 787.

Song, Q., Shepperd, M., Cartwright, M., Mair, C. 2006. Software defect association mining and defect correction effort

prediction. IEEE Transactions on Software Engineering, 32, 69–82.

Staron, M., Meding, W. 2008. Predicting weekly defect inflow in large software projects based on project planning and test

status. Information and Software Technology, 50, 782–796.

Walden, J., Doyle, M. 2012. SAVI: Static-analysis vulnerability indicator. IEEE Security & Privacy, 10, 32– 39.

Walden, J., Stuckman, J., Scandariato, R. 2014, November. Predicting vulnerable components: Software metrics vs text

mining. In 2014 IEEE 25th international symposium on software reliability engineering 23–33. IEEE.

Wang, H., Khoshgoftaar, T.M., Liang, Q. 2013. A study of software metric selection techniques: Stability analysis and defect

prediction model performance. International journal on artificial intelligence tools, 22, 1360010.

Wang, T., Li, W.H. 2010, December. Naive bayes software defect prediction model. In 2010 International Conference on

Computational Intelligence and Software Engineering, 1–4. Ieee.

Watanabe, S., Kaiya, H., Kaijiri, K. 2008, May. Adapting a fault prediction model to allow inter languagereuse. In Proceedings

of the 4th international workshop on Predictor models in software engineering, 19–24. ACM.

Wu, F., Jing, X.Y., Dong, X., Cao, J., Xu, M., Zhang, H., Ying, S., Xu, B. 2017, May. Cross-project and within- project semi-

supervised software defect prediction problems study using a unified solution. In 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C), 195–197. IEEE.

Xia, X., Lo, D., Pan, S.J., Nagappan, N., Wang, X. 2016. Hydra: Massively compositional model for cross-project defect

prediction. IEEE Transactions on software Engineering, 42, 977–998.

Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y., 2011. Testing and validating machine learning classifiers by

metamorphic testing. Journal of Systems and Software, 84, 544–558.

Yadav, H.B., Yadav, D.K. 2015. A fuzzy logic based approach for phase-wise software defects prediction using software

metrics. Information and Software Technology, 63, 44–57.

Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J. 2015, August. Deep learning for just-in-time defect prediction. In 2015 IEEE

International Conference on Software Quality, Reliability and Security, 17–26. IEEE.

Younis, A., Malaiya, Y., Anderson, C., Ray, I. 2016, March. To fear or not to fear that is the question: Code characteristics

of a vulnerable functionwith an existing exploit. In Proceedings of the Sixth ACM Conference on Data and Application

Security and Privacy, 97–104. ACM.

Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E. 2016, May. Cross-project defect prediction using a connectivity- based

unsupervised classifier. In Proceedings of the 38th International Conference on Software Engineering, 309–

320. ACM.

Zhang, Z.W., Jing, X.Y., Wang, T.J. 2017. Label propagation based semi-supervised learning for software defect

prediction. Automated Software Engineering, 24, 47–69. Zimmerman, T., Nagappan, N., Herzig, K., Premraj, R.,

Williams, L. 2011, March. An empirical study on the relation between dependency neighborhoods and failures. In 2011

Fourth IEEE International Conference on Software Testing, Verification and Validation 347–356.

IEEE.
Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy,

B. 2009, August. Cross-project defect prediction: a large scale experiment on data vs. domain vs. process. In Proceedings

of the the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, 91–100. ACM.

