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ABSTRACT 

One of the most exhaustive and pricey part of embedded software development is consider as the process of finding and fixing 

the defects (Ebert and Jones, 2009). Due to complex infrastructure, magnitude, cost and time limitations, monitoring and 

fulfilling the quality is a big challenge, especially in automotive embedded systems. However, meeting the superior product 

quality and reliability is mandatory. Hence, higher importance is given to V&V (Verification & Validation). Software testing 

is an iDue to recent technology advancement, the requirements of hardware and software applications changes. Software 

applications are designed by writing codes for different tasks. These codes may contain defects which may lead to buggy 

software development. Detecting faults in software increases software quality. As the software project size increases, defect 

detection methods will play an important role to support developers as well as  to speed up time to market with more reliable 

software products. Software testing is an important part of software V&V, which is focused on providing accurate functionality 

and long-term reliability of software systems. Software testing requires much effort, cost, infrastructure and expertise                 

as  the development. Therefore, it is required to have a good testing strategy for any industry with high software development 

costs. In this paper, we develop a better approach for software defect detection by using soft computing based machine learning 

techniques which helps to predict defects. 
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part of software V&V, which is focused on promising accurate functionality and long-term reliability of software systems. 

Simultaneously, software testing requires much effort, cost, infrastructure and expertise as the development (Lemos et al., 

2015). The costs and efforts elevate in safety critical software systems. Therefore, it is essential to have a good testing strategy 

for any industry with high software development costs. 

Nowadays, the growth of the software industry is huge and more sophisticated. Therefore, anticipating the reliability of the 

software is an important task in software development process (Roy et al., 2014). A software bug is a defective behavior of 

the software system which arises due to definite and possible violation of security policies during the application runtime. It 

is mainly caused by improper development or erroneous specification of the software system (Ghaffarian and Shahriari, 2017). 

According to ref. of Abaei and Selamat (2014), analysis and prediction of defects are essential to serve three important 

requirements. First, it helps in assessing the progress of the project and assists in scheduling testing process by the project 

manager. Second, it helps in investigating the quality of the product. Lastly, it improves the reliability and functionality of the 

product. The fault-prone modules can be identified by distinct metrics, which have been reported by the previous fault 

prediction. Some of the crucial information, such as number of faults, location, severity, and distribution of defects are 

extracted to enhance the efficiency of testing process. It further helps in improving the software quality of the upcoming 

software release. The two main advantages of software fault prediction are, enhancement of the overall testing process by 

emphasizing on fault-prone modules, identification of the refactoring candidates which are rendered as most likely to undergo 

fault (Catal, 2014). 

The models used for Software engineering cost and schedules, their estimation, etc., are implemented for several reasons 

which are, 

• Budgeting: It is the first and foremost implication, but it is not the only purpose. The most important factor is “overall 

accuracy of the system”. 

• Project planning and control: It is yet another critical feature to offer cost and scheduling estimations with respect to 

modules, stage and process. 

• Tradeoff and risk analysis: It involves the supplementary capability to focus on the project scheduling and costs 

involved in the project decisions (staffing, scoping, tools, reuse, etc.). 

• Software improvement investment analysis: In involves the additional cost and efforts required for other strategies, 

such as recycling, tools, inventory, process maturity, etc. 

In software programming, defect analysis and prediction can decisively determine potential bugs in the software and 

onstrained resources to those modules of the software framework, which are more liable to be affected by bugs. Constructing 

a defect prediction models for a software framework is helpful for numerous of developmental or maintenance activities, for 

example, software quality assessment and monitoring quality assurance (QA). 

The significance of defect prediction has propelled various scholars and engineers to characterize distinctive kinds of 

models or indicators that portray different parts of programming quality. Most research generally evaluates this issue as 

supervised learning problems and the results of those defect prediction models is dependent on the previous defect 

information. To be precise, a predictor model is built based on the training data obtained from the previous defects seen in 

past software releases. This defect predictor’s can be used to defect bugs in upcoming software projects or to cross-validate 

on the same data set (He et al., 2012), also known as Within-Project Defect Prediction (WPDP). Zimmermann et al. (2009) 

expressed that the performance of defect prediction models can be better, if there are adequate quantity of information 

accessible to train the models. Nevertheless, this type of information is not available for freshly started projects. Therefore, 

high precision in defect prediction process in such projects become extremely difficult, sometimes implausible. However, 

there are little open-source information on defect datasets, such PROMISE (Wang and Li, 2010), Apache (Ghotra et al., 

2015) and Eclipse (Ryu et al., 2016), which can be used to train the defect predictors. 

To overcome such challenges, few engineers and scholars have made an attempt to apply the predictors from one project, 

on to a different one (Li et al., 2017; Lu et al., 2015). This process of using information between different projects to construct 

defect models is generally termed as Cross-Project Defect Prediction (CPDP). It involves the process of implementing a 

predictor model in a project, which was built for some other project. 

The choice of training samples relies upon the distributional attributes of datasets. Few experimental examinations 

assessed the practical advantages of cross- project defect predictors with various programming metric, such as, process 

measurements, static code metrics, system metrics, etc., (Li et al., 2017; Lu et al., 2015), and how to uses such metrics in a 

complementary way (Zimmermann et al., 2009). Even though, several attempts are established for the implementation of 

CPDP, it is still not well developed, and suffers from poor performance in practice (Rahman et al., 2012). Besides, no 

definitive information is available on how the defect predictors amongst WPDP and CPDP are sanely selected, when there 

are no proper historical data on the project. In general, several type of software metrics, for example, history of code change, 

static code metrics, network me  
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Fig. 1. Software defect prediction techniques 

All current defect prediction models are constructed on the sophisticated amalgamation of programming metrics, with which 

a defect predictor can generally attain good level of precision. Nevertheless, few feature selection algorithms such as principal 

component analysis (PCA), can greatly lower the amount of data dimensions (He et al., 2015; Wu et al., 2017; Wang et al., 

2013), they still result in a time- consuming process. Can a compromise solution be found, which can attain a tradeoff between 

cost and accuracy? As it were, would we be able to build a generic universal predictor with hand few of metrics, such as Lines 

of Code (LOC), which can attain accurate results in comparison to other complex prediction models? Apart from choosing a 

proper software metric, there are numerous classifiers available at disposal, such as Naive Bayes (Zhang et al., 2016), J48 

(Song et al., 2006), Support Vector Machine (SVM) (Xia et al., 2016), Logistic Regression (Li et al., 2014), and Random Tree 

(Staron and Meding, 2008), etc. Apart from these, there are a few improved classifiers (Rana et al., 2013) and hybrid classifiers 

(Gondra, 2008) which are known to effectively improve classification results. 

 

 Software Defect Prediction Techniques 
To foresee the quantity of flaws anticipated that would be found in a product module/venture or to group which modules 

are likely to be imperfect, Programming Defect Prediction (PDP) systems are utilized. Various distinctive strategies    have    

been    utilized    for    characterization 

/anticipating absconds; they can be extensively gathered into methods that are utilized to foresee if or not a given programming 

ancient rarity is probably going to contain a deformity (Classification) and procedures utilized for foreseeing anticipated that 

number of imperfections would be found in a given programming antique (Prediction) and Fig. 1 outlines normally utilized 

programming imperfection forecast methods clustered by the reason –fault check expectation or defect inclined arrangement. 

In an investigation by Staron and Meding (Rajbahadur et al., 2017), professional views were utilized and their execution 

contrasted with other information based models. Author’s former works establishes the long term analytical power of 

SRGMs (Software Reliability Growth Models) within the automotive realm indicating their utility in analyzing or predicting 

fault and consistency. To categorize the software modules which are likely to be defective or to analyze the compactness of 

software defect, various software modules related to code features like complexity, size etc., has been utilized effectively. 

Techniques that utilize code and modify measurements as sources of info and utilize machine learning strategies for 

categorizing and predicting have additionally been examined by Iker Gondra (Kim et al., 2011) and Xie et al. (2011). 

Pertinence of different strategies for programming imperfection forecasts over the life cycle periods of programming 

advancement and the attributes of every strategy are shown in Table 1. 

 
 Techniques for Defect Classification 

Software defect classification is another important technique of defect prediction. These models strive to identify fault-

prone software modules using variety of software project and product attributes. In general, defect classification models are 

implemented at lower granularity levels, more predominantly at file and class level. Hence,
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Table 1. Different strategies for programming imperfection forecasts 
Method Input data required Advantages and limitations 

Causal 

Models 

Inputs about estimated size, 

complexity, qualitative inputs 

on 
planned testing and quality 
requirements 

Causal models biggest advantage is that they can be 

applied very early in the development process. Possible 
to analyse what-if scenarios to estimate output quality 
or level of testing needed to meet desired quality goals. 

Expert 

Opinions 

Domain experience (software 

development, testing and quality 

assessment). 

This is the quickest and easiest way to get the 

predictions (if experts are available). Uncertainty of 

predictions is high and forecasts may be subjected to 

individual biases 

Analogy 

Based 

Predictions 

Project characteristics and 

observations from large number of 

historical projects. 

Quick and easy to use, the current project is 

compared to previous project with most similar 

characteristics. Evolution of software process, 

development tool chain may lead to inapplicability or 
large prediction errors. 

Constructive 
Quality 

Model 

Software size estimates, product, 
personal and project attributes; defect 

removal level. 

Can be used to predict cost, schedule or the residual 

defect density of the software under development. 
Needs large effort to calibrate the model. 

Correlation 
Analysis 

Number of defects found in given 

iteration; size and test effort 

estimates can also be used in 

extended models. 

This method needs little data input which is available 

after each iteration. The method provides easy to use 

rules that can be quickly applied. The model can also be 

used to identify modules that show higher/lower levels 
of defect density and thus allow early interventions 

Regression 

Models 

Software code (or model) metrics as 

measure of different characteristics 

of software code/model; Another 

input can be the change metrics. 

Uses actual code/models characteristic metrics which 

means estimates are made based on data from actual 

software under development. Can only be applied when 

code/models are already implemented and access to the 

source code/model is available. The regression model 

relationship between input characteristics and output 

can be difficult to interpret –do not map causal 

relationship 

Machine 

Learning 

based 

models 

Software code (or model) metrics as 

measure of different characteristics 

of software code/model; Another 

input can be the change metrics. 

Similar to regression models, these can be used for 

either classification (defective/not defective) or to 

estimate defect count/densities. Over time as more data 

is made available, the models improvise on their 

predictive accuracy by adjusting their value of 

parameters (learning by experience). While some 

models as Decision Trees are easy to understand others 

may act like a black box (for example Artificial Neural 
Networks) where their internal working is not explicit 

Software 

Reliability 

Growth 

Models 

Defect inflow data of software under 

development (life cycle model) or 

software under testing. 

Can use defect inflow data to make defect predictions 

or forecast the reliability of software based system. 

Reliability growth models are also useful to assess the 

maturity/release readiness of software close to its 

release. These models need substantial data points to 
                                                                                              make precise and stable predictions  
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the software products which are flagged as defect-prone can be prioritized according to their severity for more rigorous 

verification and validation activities. 

 

Logistic Regression 
A software module can be categorized as defect-prone or not, on the basis of logistic regression. Much like the multivariate 

regression, the classification of software modules is done by using several variety of process and product metrics are employed 

as predictor variables. Zimmermann, et al. (Köksal et al., 2011) worked on the principle of logistic regression to categorize 

file/packages in Eclipse project as defect prone. 

 
 Machine Learning Models 

Some popular machine learning techniques uses statistical algorithms and data mining techniques, which is helpful for 

predicting and classifying defects. Such   techniques are identical to regression approaches that use same type of independent 

variables. On the upside, the machine learning algorithms are dynamic in nature, and they progressively enhance the overall 

prediction and classification technique.  

 
 General Process of Software Defect Prediction 

  
To build an efficient prediction model, we should have proper data on defects and metrics, which can be accumulated from 

software development efforts to use as the learning set. Thus, there is tradeoff between its prediction performance on 

additional data sets and how well this model fits in its learning set. Therefore, the performance of the model is assessed by 

the comparison of the predicted defects of the modules in a test, against the actual defects witnessed (Hewett, 2011). 

 

 General Defect Prediction Process 
Labeling: An appropriate defect data must be collected for the purpose of training a prediction model. This step generally 

involves the extraction of instances and labeling the data items (True or False). 

Extracting features and creating training sets: The extraction of features for prediction labels of instances is performed in 

this stage. Few common features for defect prediction are keywords, complexity metrics, deviations, and structural 

dependencies. By consolidating the labels and highlights of instances, a training set is generated which is used by the machine 

learning algorithms to develop a forecast model. 

Building prediction models: The prediction models can be built with the help of a training set, implemented on the general 

machine learning algorithms, such as Bayesian Network or Support Vector Machines (SVM). Based on the learned data, the 

model can classify and label the test instances as TRUE or FALSE. 

Assessment: The assessment of a prediction display is done on the basis of testing dataset collection and training set. The 

labels of the training dataset are used to build the prediction model, which is later evaluated by comparing the prediction and 

real labels. The training sets and testing sets are separated using 10-fold cross-validation technique. 

 

2. RELATED WORKS 

As indicated by Catal and Diri (2009), defect prediction models in software programming have become one of the significant 

research areas since 1990. In just two decades, the total amount of research papers in this area had increased two fold. A wide 

range of procedures and methodologies were utilized for defect prediction models, for example, decision trees (Selby and 

Porter, 1988) neural network system (Hu et al., 2007), Naïve Bayes (Menzies et al., 2004), case-based reasoning (Khoshgoftaar 

et al., 1997), fluffy logic (Yadav and Yadav, 2015) and the artificial immune recognition framework technique in Catal and 

Diri (2007).Menzies et al. (2004) carried out an experiment derived from the open-source NASA datasets with the help of few 

data mining techniques. The results were later evaluated with the help of balance parameter, probability of false alarm and 

probability of detection. Prior to the implementation of the algorithm, the authors have used the log-transformation with Info-

Gain filters. They further assured that performance of Naïve Bayes in terms of fault prediction was better than J48 algorithm. 

The authors have further contended that since a few models with low accuracy performed well, implementing such models as 

a dependable parameter for performance assessment was not suggested. Okutan and Yıldız (2014), estimated the probabilistic 

influential relationships between software metrics and probability of defect, with the help of Bayesian networks. Apart from 

the metric used in Promise data repository, two other metric were defined in this proposed research work, which were LOCQ 

for the source code quality and NOD for the number of developers. These metrics can be derived by examining the source 

code repositories of the targeted Promise data archives. Once the model was complete, the marginal probability of defect of 

the system can be understood, along with the set of influential metrics, and the correlation between defects and metrics. 

Likewise, dictionary based learning algorithms were more popular in the field of software defect prediction. Jing et al. 
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(2014) implemented software defect prediction models on the principle of machine learning techniques. The similarity 

between different software modules can be exploited to represent a small proportion of few modules with the help of some 

other modules. Furthermore, the coefficients of the pre-defined dictionary contains the historical software data, which are 

large inadequate. With the help of the qualities of the metrics extracted from the open-source programming modules, the 

researchers learn numerous dictionaries, including but not limited to, defective-free module, defective module, total 

dictionary, sub-dictionaries, etc. The researchers have also considered the problem of misclassification cost, as it usually 

imposes greater risk than other defective-free ones. Along these lines, we present a cost-sensitive discriminative dictionary 

learning (CDDL) technique for software defect classification and prediction. 

The representative studies in software defect prediction are shown in Table 2. Over the past decade, several attempts were 

made to build efficient prediction models. Process metrics and source code (Rahman et al., 2012) are some of the widely 

studied metrics. Process metrics were derived from the software archives, for example, bug tracking systems, version control 

systems, etc., which keep track of all development histories. Process metrics evaluates numerous characteristics of software 

programming process such as, ownership of source code files, changes of source code, developer interactions, etc. The source 

code metric determines the intricate should the source code be.  

 

 

 

 
 

Table 2. Representative studies software defect prediction 
Type Categories Representatives 

  Sorce code (Jing et al., 2014), Process (Churn (Kim et al., 2007), (Ghotra et 
al., 2015), Change (Kamei et al., 2010), Entropy (Zhang et al., 2016), 

 
Metrics 

Popularity (Roy et al., 2014), Authorship (He et al., 2015), Ownership (Catal, 

2014), MIM (Hewett, 2011), Network measure (Okutan and Yıldız, 2014), 

(Peters et al., 2013), (Khoshgoftaar et al., 2010), Antipattern (Shin et al., 

2010) 

Within/Cross 
Algorithm/Model 

Classification, Regression, Active/Semi-supervised learning (Hu et al., 2007), 
(Bosu et al., 2014), BugCache (Xie et al., 2011) 

 Finer prediction 
granularity 

Change classification (Gondra, 2008), Method level-prediction (Song et al., 
2006) 

  

Preprocessing 

Feature selection/Extraction (Walden and Doyle, 2012), (Kim et al., 2007), 
Normalisation (Jing et al., 2014), (Catal and Diri, 2009), Noice handling 

(Rajbahadur et al., 2017), (Morrison et al., 2015) 

 
Cross 

Transfer learning 
Metric compensation (Brereton et al., 2007), NN filter (Moshtari and Sami, 
2016), TNB (Khoshgoftaar et al., 1997), TCA + (Catal and Diri, 2009) 

 Feasibility Decision Tree (Catal and Diri, 2009), (Xia et al., 2016) 
 
 

more complex source code was more likely to be infected by bugs. Several studies have emphasized the significance of 

process metrics for defect prediction (Zhang et al., 2016; Fenton and Neil, 1999; Kamei et al., 2010). 

The prediction models built by the machine learning algorithms have the ability to detect the probability of bugs or defects 

in the source code. Few research works have mplemented latest machine learning algorithms such as active/semi-supervised 

learning algorithms, which are known to enhance prediction performance (Li et al., 2012; Zhang et al., 2017). BugCache 

algorithm was suggested by Kim et al., which uses the locality information of previous defects and maintains a list of source 

code files or modules, which were more likely to be faulty (Kim et al., 2007). BugCache algorithm uses machine learning 

techniques for building defect prediction models which uses non- statistical model. This entirely different from the other 

defect prediction models. It also fine tunes the prediction granularity. It attempts to find defects at various levels, such as, 

class, file, package, component, system. Few recent experiments have demonstrated that defects can be found at module 

level or method level, or change level (Koru and Liu, 2005). The developers can be benefited by the finer granularity model, 

as they can minimize the scope of source code, which must be inspected. Thus, preprocessing techniques are also an 

important part of defect prediction studies. Prior to the implementation of defect prediction model, few techniques are 

applied, such as normalization (Menzies et al., 2004), feature selection (Catal and Diri, 2009), noise handling (Khoshgoftaar 

and Rebours, 2007), 

etc. 

Several authors have also emphasized on cross-project fault prediction. Majority of these experiments were portrayed and 
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directed inside the prediction setting, which suggests that the forecast models were constructed and executed within the same 

project. In spite of this, it was challenging for few new projects, which did not contain any vital information about the historical 

data about the developmental process. Few of the popular representative approaches for cross defect prediction were Nearest 

Neighbour (NN) Filter (Zhang et al., 2017), metric compensation (Watanabe et al., 2008), Transfer Naive Bayes (TNB) (Ma 

et al., 2012), and TCA + (Nam et al., 2013). 

 
 Within-Project Defect Prediction 

  
Catal and Diri (2009) has conducted an investigation on over 90 software defect prediction research works, which were 

published between the vicinity of 1990 and 2009. He reviewed these papers on the basis of the performance evaluation 

metrics, learning algorithms, experimental outcomes, datasets, etc. As indicated by this review, the author expressed that a 

large portion of these research works were based on utilizing the method-oriented metrics and prediction-models. Therefore, 

they were largely dependent on the machine learning procedures, and Naive Bayes techniques, which were regarded as a 

popular machine learning techniques for supervised prediction tasks. 

Hall et al. (2011) carried out an investigation on the metrics, such as model contexts, modeling algorithms, independent 

variables, etc., and characterized their effects on the performance of defect prediction models, based on the 208 research 

works. Their outcomes demonstrated that rudimentary modeling systems, for example, Logistic Regression and Naive Bayes, 

portrayed better performance. Additionally, the performance was further enhanced by the combination of independent 

variables. The results are greatly improved by the application of feature selection on these combinations. The authors contend 

that there was considerable amount of defect prediction models, in which certainty was conceivable. However, more 

examinations which implemented a reliable technique have witnessed a comprehensive context, performance, and 

methodology. Most of these research works were reviewed w.r.t  
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two systemic literature surveys that were led with regards to WPDP. Nevertheless, they overlooked the fact that few of these 

research works were particularly new, and they normally have restricted or deficient information to train a proper prediction 

model for defect forecasting. Thus, a few researchers have started to work their way towards CPDP. 

 
 Cross-Project Defect Prediction 

  
The primary research on CPDP was performed by Briand et al. (2000), who connected models based on an open- source 

venture (i.e., Xpose) to another (i.e., Jwriter). Despite the fact that the anticipated imperfection recognition probabilities were 

not reasonable, the defect- prone class positioning was precise. They additionally approved that such a model performed 

superior to anything the irregular model and beat it regarding class size. Zimmermann et al. (2009) led a large-scale 

investigation on information versus province versus process, and found that CPDP was not generally fruitful (21/622 

expectations). They additionally detected that CPDP was not proportioned amongst internet explorer and Firefox. CPDP 

utilizing fixed code attributes in the view of 10 projects and even gathered from PROMISE archive was investigated by Turhan 

et al. They suggested a closest-neighbor sifting strategy to channel through the insignificances in cross-venture information. 

In addition, they examined the situation where models were developed from a combination of inside and cross-venture 

information, and checked for any enhancements to WPDP in the wake of including the information from different undertakings 

or projects. They presumed that when there was restricted venture chronicled information (e.g., 10% of recorded information), 

combined project estimates were reasonable, as they executed and additionally within-project forecast models. 

Rahman et al. (2012) led a cost-delicate examination of the viability of CPDP on thirty eight arrivals of nine extensive 

Apache Software Foundation (ASF) ventures, by contrasting it with WPDP. Their detections uncovered that the cost-touchy 

cross-project estimation execution was not more regrettable than the inside-venture forecast execution, and was significantly 

superior to arbitrary expectation execution. To assist cross-company learning in contrast with the state of the art Peters et al. 

(2013) acquainted a new filter called Burak filter. The outcomes uncovered that their method could assemble sixty-four percent 

more valuable indicators than both cross-company and within-company approaches in view of Burak channels, and exhibited 

that cross-organization fault estimate could be connected ahead of schedule in a venture's lifecycle. He et al. (2015) directed 

three tests on similar informational indexes utilized as a part of this examination to approve training information from different 

projects can give worthy outcomes. They additionally suggested a way to deal with naturally choosing appropriate training 

information for ventures or projects without neighborhood information. 

 Herbold (2013) suggested a few methodologies in view of forty-four informational collections from fourteen open- source 

ventures regarding training data selection for CPDP. A few portions of their informational collections are utilized here in 

our paper. The outcomes exhibited that their choice procedures enhanced the realized progress rate essentially, though the 

nature of the outcomes was as yet unfit to contend with WPDP. The survey uncovers that earlier examinations have mostly 

explored the possibility of CPDP and the decision of preparing information from their tasks. Yet moderately little 

consideration was given to experimentally investigating the execution of a forecaster in light of a disentangled metric set 

from the viewpoints of exertion and-cost, precision and simplification. Besides, next to no was thought about whether the 

forecasters made with basic or least programming metric subsets acquired by wiping out some unimportant and repetitive 

highlights can accomplish adequate outcomes. 

 
 Software Metrics 

A wide range of software models are regarded as features, which can be utilized for defect prediction, to enhance overall 

quality of the software programming. Simultaneously, various correlations are made among numerous software metrics to 

review which metric offers good level of performance. Shin and Williams (2013) examined whether source code and 

programming histories were discriminative and detect weak codes among sophisticated, code agitate, and parameters 

followed by the designer. It was discovered that 24 of the 28 metrics were discriminative for both Linux and Mozilla Firefox 

kernel. By utilizing all the three kinds of metrics, these models predicted more than 80% of the potential weaknesses in the 

files within under 25% false positives for the two activities. Marco et al. (2010) led three trials on five frameworks with 

process metrics, source code metrics, previous defect data, entropy of changes, and so forth. They found that the best 

performance can be obtained by the modest process metrics, which were marginally better than entropy and churn of source 

code metrics. 

Zimmermann et al. (2009) utilized social network parameters extracted from dependency relation between software 

programming on Windows Server 2003 to predict which elements were more vulnerable to defects. With respect to 

predicting defects, the experimental results have shown that the performance of network metrics was better than source code 

metrics. Tosun et al. (2011) conducted experiments on five public datasets to replicate and verify their outcomes from two 

distinct levels of granularity. The outcomes have shown that network metrics were more appropriate for detecting defects 

for large-scale and complicated models, even though their performance in smaller models were not much impressive. Premraj 

and Herzig (2011) reproduced the Zimmermann and Nagappan's work to conduct further evaluation of the generality of these 
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results. However, the results were found to be consistent  

Table 3. Comparative analysis of classification based techniques for software defect 

prediction 

Authors and 
publication 

year 

 

Objective 
 

Methodology 
 

Key findings 
 

Conclusion 

Roy et al. 

(2014) 

Software 

reliability 
prediction 

Feed forward and 

recurrent neural 
network 

Genetic algorithm is 

used for training the 
neural network 

Better prediction of 

software defects 

 

Ghaffarian 

and Shahriari 

(2017) 

 
Survey of SDP 

techniques 

 

Data mining and 

machine learning 

techniques for SDP 

Data mining and ML 

techniques are good for 

early defect prediction 

and vulnerability 

An extensive review 

which shows 

advantages and 
disadvantages of DM 
and ML techniques 

 
Catal and Diri 

(2009) 

 
 

Fault prediction 

Artificial immune 

system and random 

forest approach for 

classification 

 

Significant Feature 

selection can improve 

the performance 

Comparative 

performance where it 

shows that Random 

forest achieves better 

accuracy 

 

Wang and 

Li (2010) 

Software defect 

prediction for 

improving the 
quality 

 

Naïve Bayes 

classification model 

Multi- variants Gauss 

Naive Bayes (MvGNB) 

used for reducing the 
complexity 

MvGNB achieves 

better performance 

when compared with 
J48 classifier 

 
Yadav and 

Yadav 

(2015) 

Different artifact 

and defect 

prediction in 
software 
engineering 

 
Fuzzy logic 

technique 

 

Phase-wise computation 

along with fuzzy logic 

classification 

 

It can be used for 

classifying the defect 

types 

 
Okutan and 

Yıldız (2014) 

 

Software defect 

prediction and 

level of defect 

Feature extraction 

and Bayesian 

classification 

technique for SDP 

Significant feature 

extraction and 

relationship between 

software metrics and 
                                                                                                        defects.  

 

It can be used for both 

supervised and 

unsupervised learning 

with the original work. In any case, regarding the array of datasets, code metrics were more suitable for experimental 

investigations on open-source programming ventures. 

Radjenovic' et al. (2013) grouped 106 papers on defect prediction with respect to context properties and metrics. hey 

discovered that the amount of process metrics, source code metrics, and object-oriented metrics, were 24%, 27%, and 49%, 

respectively. Chidamber and Kemerer’s (CK) uite metrics were most frequently used. In comparison to complexity metrics 

and traditional size, the object-oriented and process metrics were more efficient. Thus, in comparison to static code metrics, 

the process metrics were more proficient in predicting post-release defects. On the basis of these research works, a comparative 

review was presented in Table 3, which gives details on techniques used, results, and strengths of individual works. The 

classification based techniques are presented first. 

Zimmermann et al. (2011) examined the likelihood of detecting the presence of vulnerabilities and defects in binary 

modules of a popular software product (Microsoft Windows Vista). The researchers have used classical metrics which were 

implemented in past research works for defect prediction. Initially, correlations was computed which exists between the 

metrics and amount of defects per  binary module. The Spearman’s rank correlation was used for this purpose. The results 

revealed that there was a noteworthy connection among classical metrics and the number of vulnerabilities. Another research 

was led to determine the prediction capabilities of these metrics. For this purpose, a five groups of classical metrics (i.e., 

dependency, coverage, coverage, organizational, churn) were inspected using binary Logistic Regression. Williams and 

Meneely (Meneely et al., 2008), examined the connection between software vulnerabilities and developer-activity metrics. 

The developer-activity metrics consists of number of commits made to a file, number of developers who have modified the 

codes in the source program, amount of geodesic paths which contains a file in the contribution network. The research was 

carried out on three open-source software projects. The assembled informational in a given research work contains a label 

which suggest if the source code file was patched or not. The version control logs would disclose the developer- activity 

metrics. With the help of statistical correlation analysis, the researchers have confirmed the existence of statistical correlation 

for every metric with the given quantity of vulnerabilities. However, the correlation was not very strong. 
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by using Bayesian network with tenfold cross-validation, as the predictive model. 

Walden and Doyle (2012) have led a study to inspect the correlation among software metric and vulnerabilities in 14 

different popular open source web applications during 2006 and 2008, for example, Mediawiki, WordPress. The researchers 

implemented static analytical tools, such as, PHP CodeSniffer, Fortify Source Code Analyzer. With the help of this tool, they 

have estimated various metrics in source code repositories of these web applications, such as, source-code size, nesting 

complexity, static analysis vulnerability density (SAVD), Security Resources Indicator (SRI), etc. Williams and Shin (2008), 

conducted an experiment to check if the conventional defect prediction models, which are built on the principle of code-churn 

metrics and complexity, were any help in predicting the fault vulnerability. The experiment was carried out on Mozilla Firefox 

with a fault history metric, 5 code churn metrics, and 18 complexity metrics. With various classification techniques for the 

fault prediction, the researchers have concluded that the results were almost identical. 

Shin et al. (2010) carried out an intense research to check if the vulnerability prediction was affected by the code- churn 

and developer-activity (CCD) and complexity. In regard to this, the researchers have conducted experiments on two open-

source projects. The analysis was performed on over 28 CCD software metrics, which also consists of 3 code-churn metrics, 

14 complexity metrics, and 11 developer-activity metrics. 

The authors have used the Welch’s t-test to assess the discriminative power of the metrics. For both the projects, the test 

hypotheses were supported by at least 24 of 28 metrics. For the purpose of evaluation of predictive power of the metrics, the 

authors have tested numerous classification techniques. They have discussed the result form just one technique, as the 

performance was similar. To verify the predictive capacity of the model, the authors have validation on next-release, where 

numerous releases were in progress. Apart from that, they have also performed cross- validation, where only a single release 

would be in progress. Moshtari and Sami (2016) pointed out three important constraints of vulnerability prediction models 

of previous research works. Therefore, they presented a new technique to predict the potential location of the defects in the 

software. It is accomplished by complexity metrics by resolving the limitations of previous studies. For the purpose of 

detecting software vulnerabilities, the researchers have proposed a semi-automatic analysis framework. The output from this 

framework is used as vulnerability information, which was known to provide more comprehensive details about the 

vulnerabilities in software, as explained by the authors. This research had examined both cross-project and within- project 

fault prediction, with the help of accumulated 

information from over five different open-source projects. 

Bosu et al. (2014) conducted a similar experiment, in which they investigated more than 260,000 code review requests 

from over 10 different open source projects. Subsequently, they were able to identify more than 400 vulnerable code changes, 

with the help of three-stage semi- automated process. The main objective was to detect the characteristics of vulnerable code 

changes, and developers who might cause such vulnerabilities. Some key discoveries of this study include: 

1. The probability of fault elevates if the changes made in the codes are high. 

2. Changes are made by less experienced developers increases the chances of defects. 

3. The chances of defects are higher in new files, in comparison to modified files. 

To recognize constraints which are responsible for vulnerabilities, Perl et al. (Brereton et al., 2007) examined the impacts 

of utilizing the meta-information enclosed in code sources close by code –metrics. The initiators declare the way that 

programming develops incrementally, and most open-source projects utilize adaptation control techniques, subsequently, 

constraints define normal units to check for vulnerabilities. With this intention, the creators accumulate a dataset containing 

170,860 confers from sixty six C/C ++ GitHub projects, including 640 vulnerability contributing commits (VCCs) plotted 

to significant CVE IDs. The creators select an arrangement of code-beat and designer-interest metrics, and in addition GitHub 

meta- information from various extensions (creator, document, commit and project) and concentrate these highlights for the 

accumulated dataset. To distinguish VCCs from unbiased commits, the creators assess their recommended technique, named 

VCC Finder, which utilizes a Support Vector Machine (SVM) classifier based on this dataset. 

To analyze the execution of foreseeing vulnerable programming mechanisms, in light of programming metrics against 

text-extracting procedures, Walden et al. (2014) played out an investigation. With this thought, the creators initially 

developed a manually-built dataset of vulnerabilities assembled from three vast and well known open-source PHP web 

applications (Moodle, PhpMyAdmin, Drupal), comprising of two hundred and twenty three vulnerabilities. As an endowment 

to the investigation group, this dataset is presented. An arrangement of twelve code unpredictability metrics was chosen for 

this examination in order to estimate vulnerability in the light of programming metrics. For content mining, every PHP source 

file was tokenized. Unwanted tokens are either transferred (punctuations, comments, string, numeric literals, etc.) or 

terminated. A count was kept on the frequencies of final tokens. The numerical feature-vectors are built from the textual 

tokens of each PHP source file, using the popular “bag-of-words” technique. 

Morrison et al. (2015) explains that defect prediction models which are implemented by the Microsoft teams, are different 

from the vulnerability prediction models (VPMs). To clarify this disparity, for two fresh releases of the Microsoft Windows 

OS the researchers have made an attempt to reproduce a VPM technique, 
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Table 4. Uniqueness and few advantages of each work 

Authors Metrics Granularity 
Within/Cross- 

project Vulnerability 

 

Zimmerman et al. 

(2011) 

Code churn, coverage, 

dependency, 

complexity , 
organizational 

 
Binary modules 

 
Within project 

 
Public advisories 

Meneely et al. 
(2008) Developer activity Source file Within project Public advisories 

 Code complexity and 
security resources Source file Within project 

Tool-based 
defection 

Walden and Doyle 
(2012) 

Complexity, fault- 
history, code churn Source file Within project Public advisories 

 

Yonghee et al. 

(Shin and Williams, 

2011) 

Code complexity, 

dependency network 
complexity and 

execution complexity 

 
Source file 

 
Within project 

 
Public advisories 

Shin and Williams 
(2008) 

Complexity, code-churn, 
developer activity Source file Within project Public advisories 

 

Shin et al. (2010) 
Unit complexity, 

coupling 

 

Source file 

 

both 

Self-developed 
detection 

framework 

Moshtari and Sami 
(2016) 

Code churn, developer 
activity Code commits Within project Public advisories 

Bosu et al. (2014) Developer activity Code commits Within project Public advisories 

Perl et al. (Brereton 

et al., 2007) 

Code churn, developer 
activity, GitHub 

Metadata 

  

Within project 

 

Public advisories 

Walden et al. (2014) Code complexity Source file Both Public advisories 

Morrison et al. 

(2015) 

Code churn, complexity, 
coverage, 

dependency, 

organizational 

 

Binary module 

 

Within project 

 

Public advisories 

 

Younis et al. (2016) 
Code 

complexity, 

information flow, 
                                         functions, Invocations.  

 

Functions 
 

Within project 
 

Public advisories 
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Younis et al. (2016) made an attempt to detect the attributes of code, which contains defects that was more ikely to be 

susceptible. Since they commenced the study, they were able to recognize over 183 defects from the Linux kernel and Apache 

HTTPD web server projects. It must be noted that these projects contained 82 exploitable vulnerabilities. The researchers have 

chosen over 8 software metrics from 4 groups, in order to represent these ulnerabilities. They had used Welch’s t-test to 

investigate the discriminative power of each metric. Furthermore, the researcher examined if there is a combination of these 

metrics which can be exploited as predictors for few defects, wherein, 3 diverse feature selection techniques and 4 

classification techniques were verified. 

In the previous section, a review was presented on various recent researches in the area of defect prediction models based 

on software metrics. Table 4 presents the summary of all the research works reviewed in this section and also tabulates the 

uniqueness and few advantages of each work. 

3. APPLICATIONS OF DEFECT PREDICTION 

One of significant objectives of defect prediction models is efficient utilization of available resources for assessing and 

testing programming modules. Nevertheless, there is only a hand few of contextual analyses which use defect prediction 

models (Lewis, 1999). Thus, Rahman et al. (2012) led most of their investigation on cost-viability. Lewis (1999) pioneered 

a recent contextual investigation directed by Google, which compares the BugCache and Rahman's technique, with respect 

to the amount of closed bugs (Peters et al., 2013). The outcomes have indicated that the designers favored Rahman's 

technique. 

In any case, the defect prediction models do not give any advantages to the developers. In a recent survey, Rahman et al. 

(2012) demonstrated that defect prediction models could be useful to organize potential warnings discovered by the bug 

finders, for example,   
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organize or choose appropriate test cases. In regression testing, performing all the test cases are not financially feasible, and 

consumes large amount of time as well. Therefore, it is best to choose proper test cases, which investigates the potential 

faults in the system (Lessmann et al., 2008). The results of the defect prediction models can provide an idea on the potential 

bugs and their severity, which can be exploited to select and prioritize the test cases. On the basis of previously reviewed 

works, it is obviously that the area of defect prediction has more to offer, and hence, it is in its early stages. It can be 

concluded with few of the future improvements and limitation, which can be 

extracted from past research works. 

• A factual limitation in the area of defect prediction models is that the bugs and weaknesses are few in number in the given 

datasets. In data mining and machine learning algorithms, this limitation is termed as imbalance class data. This imbalance 

can create a greater drop in overall performance of the algorithms. However, there are few methods to overcome this 

issue (Khoshgoftaar et al., 2010). Furthermore, few research works were focused on achieving the same, with random 

under-sampling the majority class. This is regarded as a critical problem which should not be overlooked. 

• Moshtari et al. (2016) has implemented a semi- automatic system for fault identification, rather than a data from public 

repositories and fault databases (example: NVD). Thus, in comparison to other techniques, this system resulted in better 

recall and precision values. This could pave the way for more intense research in the future. 

• There are only few research works on the cross-project studies in the area of defect prediction. Therefore, it can be 

regarded as a field of future enhancement. The cross-project fault prediction models are not well researched in the context 

of defect prediction models. There are additional concerns in the Cross-project prediction models which are induced due 

to distribution of data in the training set, which can differ largely among themselves. Such variations can greatly degrade 

the performance of machine learning algorithms and statistical-analysis techniques. This limitation can be overcome by 

a descendant of the machine-learning algorithm, known as “inductive transfer” (or “transfer learning”) techniques. About 

the implementation of these techniques are well documents has in software defect prediction studies (Catal and Diri, 

2009). 

• Majority of the fault prediction techniques offered poor performance. This is mainly due to the use of traditional 

software metrics, which are not considered as the appropriate indicators of software defects. Morrison et al. (2015) has 

discussed bout this situation. Later on, characterizing security-oriented metrics, for example, the Security Resources 

Indicator   (SRI), which was proposed by Doyle and Walden (2012) this is another territory for future investigations. 

• The use of deep-learning techniques for defect prediction is not well explored. It has emerged as a new area of machine-

learning algorithm which is made impressive accomplishments in few application specific domains. Furthermore, it is 

increasing gain more popularity from scholars and professionals (Jiang et al., 2008). Yang et al. (2015) proposed a 

technique based on deep-learning methods for just-in-time software defect prediction. This laid the foundation for 

another area of research for future improvements. 

 

4. CONCLUSION 

This survey paper helps the researchers to study about software defects and software defect prediction techniques. To 

implement the data pre-processing technique; data cleaning, data normalization and data discretization will be performed in 

data mining. For feature extraction and selection to implement of new approach, to implement of evolutionary computation 

and optimization technique for best feature selection and to implement machine learning classification techniques for bug 

classification. An improved approach consists of data pre-processing low computation cost, complex model, software defect 

prediction comparative analysis and improved classification performance of the system. 
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