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Abstract 

 

With many real analysis principles, such as continuity, differentiability, and integrability, this paper aims to analyse 

and define the neutrosophic real functions with one neutrosophic variable depending on the geometric isometry 

(AH-Isometry). Different common functions in the neutrosophic environment, such as the logarithmic function, 

exponential function, and trigonometric functions, have formal formulations that we have described. Rising to 

neutrosophic powers is clearly described as rising to neutrosophic numbers to any power. 
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Introduction 

 

Neutrosophy is a new branch of philosophy concerns with the indeterminacy in all areas of life and science. It has 

become a useful tool in generalizing many classical systems such as equations [30], number theory , topology, 

linear spaces, modules , and ring of matrices [1-7,12-21]. 

 

In the literature, we find many studies about neutrosophic calculus, where some definitions and properties were 

presented about neutrosophic real functions and numbers [9-11,23-33]. 

 

The neutrosophic real functions with one variable were defined only in a special case, as follows: 

 
(𝒙) = 𝒈(𝒙) + 𝒉(𝒙)𝑰 where 𝑰 takes an interval value defining what is called by neutrosophic thick functions . For 

example(𝒙) = 𝟐𝒙 + 𝟓𝒙𝑰, 𝑰 ∈ [𝟎, 𝟎. 𝟎𝟏] is a neutrosophic real thick function. 

 

The problem with this definition, that it does not consider the general case 𝒇: (𝑰) → 𝑹(𝑰); 𝒇 = 𝒇(𝑿) and 𝑿 = 
𝒙 + 𝒚𝑰 ∈ 𝑹(𝑰). 

 
Recently, Abobala et.al, have presented the concept of two-dimensional AH-isometry to study the correspondence 

between neutrosophic plane(𝑰) × 𝑹(𝑰) and the classical module 𝑹𝟐 × 𝑹𝟐. Also, the one- dimensional AH-isometry 

between R(I) and 𝑹 × 𝑹. This isometry was useful in defining inner products and norms , ordering , and 

neutrosophic geometrical shapes. 

 

In this work, we use the one-dimensional AH-isometry to turn the general case of neutrosophic real functions with 

one variable into two classical real functions so we will go from (𝑰) space into 𝑹 × 𝑹 space, we study the 

properties of our functions then we go back to 𝑹(𝑰) space using AH-isometry. 

 

This work will provide for the first time an algorithm to compute the neutrosophic powers of neutrosophic 

numbers including neutrosophic powers which wasn’t studied before, we will present and define neutrosophic 

continuity, differentiation, integration and lots of popular neutrosophic functions like neutrosophic exponential 

function, neutrosophic logarithmic function and neutrosophic trigonometric functions. 

 

Definitions and theorems presented in this paper are very useful to define mathematically lots of concepts 

including differential equations, integral equations, probability distribution functions,... etc. 

 

1. Neutrosophic Functions on (𝑰) 
 

Definition 2.1 

Let (𝐼) = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏 ∈ 𝑅} where 𝐼2 = 𝐼be the neutrosophic field of reals. The one-dimensional isometry 

(AH-Isometry) is defined as follows: [49] 

𝑇: 𝑅(𝐼) → 𝑅 × 𝑅 
𝑇(𝑎 + 𝑏𝐼) = (𝑎, 𝑎 + 𝑏) 
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Remark: 

𝑇 is an algebraic isomorphism between two rings, it has the following properties: 

1) 𝑇 is bijective. 

2) 𝑇 preserves addition and multiplication, i.e.: 

𝑇[(𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼)] = 𝑇(𝑎 + 𝑏𝐼) + 𝑇(𝑐 + 𝑑𝐼) 
And 

𝑇[(𝑎 + 𝑏𝐼) ∙ (𝑐 + 𝑑𝐼)] = 𝑇(𝑎 + 𝑏𝐼) ∙ 𝑇(𝑐 + 𝑑𝐼) 
3) Since 𝑇 is bijective, then it is invertible by: 

𝑇−1: 𝑅 × 𝑅 → (𝐼) 
𝑇−1(𝑎, 𝑏) = 𝑎 + (𝑏 − 𝑎)𝐼 

4) 𝑇 preserves distances, i.e.: 

𝑇ℎ𝑒 distance on 𝑅(𝐼) can be defined as follows: 

Let 𝐴 = 𝑎 + 𝑏𝐼, 𝐵 =   + 𝑑𝐼 be two neutrosophic real numbers, then 𝐿 = ‖�⃗⃗⃗⃗��⃗�→‖ = 𝑑[(𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼)] = 
|𝑎 + 𝑏𝐼 − (𝑐 + 𝑑𝐼)| = |(𝑎 − 𝑐) + 𝐼(𝑏 − 𝑑)| = |𝑎 − 𝑐| + 𝐼[|𝑎 + 𝑏 − 𝑐 − 𝑑| − |𝑎 − 𝑐|]. 

 

 
On the other hand, we have: 

𝑇(‖�⃗⃗⃗⃗��⃗�→‖) = (|𝑎 − 𝑐|, |(𝑎 + 𝑏) − (𝑐 + 𝑑)|) = (𝑑(𝑎, 𝑐), 𝑑(𝑎 + 𝑏, 𝑐 + 𝑑)) = 𝑑[(𝑎, 𝑎 + 𝑏), (𝑐, 𝑐 + 

𝑑)]=𝑑(𝑇(𝑎 + 𝑏𝐼), 𝑇(𝑐 + 𝑑𝐼)) 

=‖𝑇(�⃗⃗⃗⃗��⃗�→)‖. 

This implies that the distance is preserved up to isometry. i.e.‖(𝐴𝐵)‖ = 𝑇(‖𝐴𝐵‖) 

 

 
Definition 2.2 

Let 𝑓: (𝐼) → 𝑅(𝐼); 𝑓 = 𝑓(𝑋) and 𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼) the f is called a neutrosophic real function with one 

neutrosophic variable. 

Example: 

Take 𝑓: (𝐼) → 𝑅(𝐼); 𝑓(𝑋) = 𝑋2 + 𝐼𝑋 + 2𝐼 = (𝑥 + 𝑦𝐼)2 + 𝐼(𝑥 + 𝑦𝐼) + 2𝐼 
= 𝑥2 + (𝑦2 + 2𝑥𝑦 + 𝑥 + 𝑦 + 2) 

In the following we are going to show how to study analytical properties of the function defined in definition 2.2 

Remark: 

Using the one-dimensional AH-isometry we can turn any neutrosophic real function into two classical real 

functions, i.e., to the classical Euclidean plane 𝑅 × 𝑅. 

Example: 

Consider the following neutrosophic real function 

𝑓: (𝐼) → 𝑅(𝐼) ∶ 𝑓(𝑋) = 𝐼𝑋 − 1 + 3𝐼, 

We can write: (𝑓(𝑋)) = 𝑇(𝐼)𝑇(𝑋) + 𝑇(−1 + 3𝐼) 
= (0,1)(𝑥, 𝑥 + 𝑦) + (−1,2), 

= (−1, 𝑥 + 𝑦 + 2), 

Assuming that 𝑋 = 1 + 𝐼, i.e., 𝑥 = 𝑦 = 1 we get: 

(𝑓(1 + 𝐼)) = (−1,4) ⇒ 𝑓(1 + 𝐼) = 𝑇−1(−1,4) = −1 + 5𝐼, By 

direct computing we can find: 
(1 + 𝐼) = 𝐼(1 + 𝐼) − 1 + 3𝐼 = −1 + 5𝐼, 

Theorem 2.1 

Let 𝑓: (𝐼) → 𝑅(𝐼) be a neutrosophic real function with one variable,𝑋 = 𝑥 + 𝑦𝐼 ∈ 𝑅(𝐼) then 𝑓 can be turned into 

two classical real functions. 

Proof 

Since the direct image of the variable 𝑋 by the one-dimensional AH-isometry is (𝑋) = (𝑥, 𝑥 + 𝑦) we get that 

(𝑓(𝑋)) = (ℎ(𝑥), 𝑔(𝑥 + 𝑦)) where: ℎ, 𝑔: 𝑅 → 𝑅 are classical real functions. 

Definition 2.3 

Let 𝑓: (𝐼) → 𝑅(𝐼) be a neutrosophic real function with one variable. We say that f is integrable, continuous, or 

differentiable on ] + 𝑏𝐼, 𝑐 + 𝑑𝐼[ iff 𝑇(𝑓(𝑋)) is integrable, continuous, or differentiable on 𝑇( ]𝑎 + 𝑏𝐼, 𝑐 + 

𝑑𝐼[   ) 
Example: 
Let ( ) ( ) (   ) 

1     2 
 

 

we have: 
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∫ 

3 

1 

𝑓: 𝑅 𝐼 → 𝑅 𝐼 ; 𝑓 𝑋 =   𝑋 
2 + 𝐼 

1) 1 + 𝐼 ≤ 1 + 2𝐼 because 1 ≤ 1, 1 + 1 ≤ 1 + 2 
2) 𝑓 is integrable on [1 + 𝐼, 1 + 2𝐼] that is because 

(𝑓(𝑋)) = 𝑇 (
1
) 𝑇(𝑋2) + 𝑇(𝐼), 
2 

= (
1 

, 
1
) (𝑥2, (𝑥 + 𝑦)2) + (0,1), 

2  2 

= (
1 

𝑥2, 
1 

(𝑥 + 𝑦)2 + 1), 
2 2 

([1 + 𝐼, 1 + 2𝐼]) = [(1,2), (1,3)] = ([1,1], [2,3]), 

3) Now, we integrate 𝑓 as following: 

a) by using 𝑇: 

We have: 
1 1 𝑥2 𝑑𝑥 = 0, 

1 2 

Also: 
∫

3 
[

1 
(𝑥 + 𝑦)2 + 1] 𝑑(𝑥 + 𝑦), 

2    2 
1 ( )3 ( )  , = [    𝑥 + 𝑦 
6 

+ 𝑥 + 𝑦 ] 
2 

= 
1 

27 + 3 − 
6 

So: 

1 8 − 2 = 
6 

25
,
 

6 

𝑇−1 (0, 
25

) = 
25 

𝐼 = ∫
1+2𝐼 

(𝑋)𝑑𝑋, 
6 6 1+𝐼 

b) by direct computing: 
1+2𝐼 

∫1+𝐼 
(  2 

2 

1 
+ 𝐼) 𝑑𝑋 = [ 

6 
𝑋3 

1+2𝐼 

+ 𝐼𝑋] , 
1+𝐼 

= 
1 

(1 + 2𝐼)3 + 𝐼(1 + 2𝐼) − 
1 

(1 + 𝐼)3 − 𝐼(1 + 𝐼), 
6 6 

= 
1 

(1 + 6𝐼 + 12𝐼 + 8𝐼) + 3𝐼 − 
1 

(1 + 3𝐼 + 3𝐼 + 𝐼), 
6 6 

= 
25 

𝐼, 
6 

Notice that we get the same result! 

2. Computing Powers in 𝑹(𝑰) 
To compute such equation: (𝑎 + 𝑏𝐼)+𝑑𝐼 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 we need the one-dimensional isometry again: 

[(𝑎 + 𝑏𝐼)𝑐+𝑑𝐼] = (𝑎, 𝑎 + 𝑏)(𝑐,𝑐+𝑑) = (𝑎𝑐, (𝑎 + 𝑏)𝑐+𝑑), 

Which results: 

(𝑎 + 𝑏𝐼)𝑐+𝑑𝐼 = 𝑇−1(𝑎𝑐, (𝑎 + 𝑏)𝑐+𝑑), 

= 𝑎𝑐 + 𝐼[(𝑎 + 𝑏)𝑐+𝑑 − 𝑎𝑐]. 
Example: 

let 𝐴 = (2 + 𝐼)𝐼, we have: 

(𝐴) = (2,3)(0,1) = (20, 31) = (1,3). 

⇒ 𝐴 = 𝑇−1(1,3) = 1 + 2𝐼. 

3. Neutrosophic Trigonometric Functions: 

In the following theorem, we are going to represent and provide formulas of trigonometric functions with 

neutrosophic angle of the form 𝜃𝑁 = 𝑎 + 𝑏𝐼 and some properties according to it. 
Theorem 4.1: 

Let (𝐼) be the neutrosophic field of reals, we have: 

1. sin(𝑎 + 𝑏𝐼) = sin 𝑎 + 𝐼[sin(𝑎 + 𝑏) − sin 𝑎 ] 
2. cos(𝑎 + 𝑏𝐼) = cos 𝑎 + 𝐼[cos(𝑎 + 𝑏) − cos 𝑎] 
3. tan(𝑎 + 𝑏𝐼) = tan 𝑎 + 𝐼[tan(𝑎 + 𝑏) − tan 𝑎] 
4. sin2(𝑎 + 𝑏𝐼) + cos2(𝑎 + 𝑏𝐼) = 1 
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 1   

Proof: 

1. sin(𝑎 + 𝑏𝐼) = 
𝑒𝑎+𝑏𝐼−𝑒−(𝑎+𝑏𝐼) 

= 𝐴 , 𝑖2 = −1. 
2𝑖 

𝑇(𝐴) 
1 

= 𝑇 ( ) 𝑇(𝑒 𝑎+𝑏𝐼 − 𝑒 −(𝑎+𝑏𝐼)) 
2𝑖 

= (
 1 

) [(𝑒, 𝑒)(𝑎,𝑎+𝑏) − (𝑒, 𝑒)(−𝑎,−𝑎−𝑏)] 
2𝑖 

= 
1 

[(𝑒𝑎, 𝑒𝑎+𝑏) − (𝑒−𝑎, 𝑒−𝑎−𝑏)] 
2𝑖 

⇒ 𝐴 = 
1 

(𝑒𝑎 + (𝑒𝑎+𝑏 − 𝑒𝑎)− 𝑒−𝑎 − 𝐼(𝑒−𝑎−𝑏  − 𝑒−𝑎)) 2𝑖 
𝑒𝑎 − 𝑒−𝑎 

= 
2𝑖 

+ 𝐼 [ 
𝑒𝑎+𝑏 − 𝑒−𝑎−𝑏 

2𝑖 

𝑒𝑎 − 𝑒−𝑎 

− ] 
2𝑖 

= sin 𝑎 + [sin(𝑎 + 𝑏) − sin 𝑎] 
Notice that we can compute sin(𝑎 + 𝑏𝐼)directly as follows: 
(sin(𝑎 + 𝑏𝐼)) = sin[𝑇(𝑎 + 𝑏𝐼)] = sin(𝑎, 𝑎 + 𝑏) = (sin 𝑎 , sin(𝑎 + 𝑏)), 

⇒ sin(𝑎 + 𝑏𝐼) = sin 𝑎 + 𝐼[sin(𝑎 + 𝑏) − sin 𝑎], 
2. similar to proof 1 

3. similar to proof 1 

4. sin2(𝑎 + 𝑏𝐼) = (sin 𝑎 + 𝐼[sin(𝑎 + 𝑏) − sin 𝑎])2 
= sin2 𝑎 + 2𝐼 sin 𝑎 sin(𝑎 + 𝑏) − 2𝐼 sin2 𝑎 + 𝐼 (sin2(𝑎 + 𝑏) − 2 sin(𝑎 + 𝑏) sin 𝑎 + sin2 𝑎), 

= sin2 𝑎 + [2 sin 𝑎 sin(𝑎 + 𝑏) − 2 sin2 𝑎 + sin2(𝑎 + 𝑏) − 2 sin(𝑎 + 𝑏) sin 𝑎 + sin2 𝑎], 
= sin2 𝑎 + [sin2(𝑎 + 𝑏) − sin2 𝑎], Similarly, 

we find that: 

cos2(𝑎 + 𝑏𝐼) = cos2 𝑎 + 𝐼[cos2(𝑎 + 𝑏) − cos2 𝑎], 
So: 

sin2(𝑎 + 𝑏𝐼) + cos2(𝑎 + 𝑏𝐼) = sin2 𝑎 + cos2 𝑎 + 𝐼[sin2(𝑎 + 𝑏) − sin2 𝑎 + cos2(𝑎 + 𝑏) − cos2 𝑎], 
= 1 + [1 − 1], 
= 1. 

Theorem 4.2: 

1. −1 ≤ sin(𝑎 + 𝑏𝐼) ≤ 1 
2. −1 ≤ cos(𝑎 + 𝑏𝐼) ≤ 1 
Proof: 

1. We have (−1, −1) ≤ [sin(𝑎 + 𝑏𝐼)] = (𝑠𝑖𝑛𝑎, sin(𝑎 + 𝑏)) ≤ (1,1), thus 

𝑇−1(−1, −1) ≤ sin(𝑎 + 𝑏𝐼) ≤ 𝑇−1(1,1), 𝑖. 𝑒. −1 ≤ sin (𝑎 + 𝑏𝐼) ≤ 1. 

2. The proof is similar to 1. 
Remarks: 

1. sin 𝐼𝜋 = sin 0 + 𝐼[sin 𝜋 − sin 0] = 0 
2. cos 𝐼𝜋 = cos 0 + 𝐼[cos 𝜋 − cos 0] = 1 + 𝐼[−1 − 1] = 1 − 2𝐼 

3. sin 
𝜋 

2 
𝐼 = sin 0 + 𝐼 [sin 

𝜋
 
2 

− sin 0] = 𝐼 

4. cos 
𝜋 

2 5. 𝜋 
 

 

𝐼 = cos 0 + 𝐼 [cos 
𝜋
 
2 

1 
 

 

− cos 0] = 1 − 𝐼 

sin 
6. 

𝐼 = 𝐼 
4 √2 
𝜋 1 

 
 

 cos 𝐼 = 1 + ( 
4 √2 − 1) 𝐼 

7. tan 
𝜋
 

 1   
𝐼 

𝐼 = 𝐼 = √2 
4 1+( 

√2 
−1) 

5. Neutrosophic exponential and logarithmic functions: 

In this section we are going to define and find the mathematical form of the function (𝑋) = 𝑒𝑋 where 𝑋 = 𝑥 + 
𝐼𝑦: 
Theorem 5.1 

Let (𝐼) be the neutrosophic field of reals, we have: 

1. 𝑒𝑥+𝐼𝑦 = 𝑒𝑥 + (𝑒𝑥+𝑦 − 𝑒𝑥) 

2. ln(𝑥 + 𝐼𝑦) = ln 𝑥 + 𝐼(ln(𝑥 + 𝑦) − ln(𝑥)), where 𝑥 + 𝑦𝐼 > 0. 

Proof: 

1. Let 𝐴 = 𝑒𝑋: 
(𝐴) = 𝑇(𝑒𝑋) = 𝑇(𝑒𝑥+𝐼𝑦) = 𝑒𝑇(𝑥+𝐼𝑦) = 𝑒(𝑥,𝑥+𝑦) = (𝑒𝑥, 𝑒𝑥+𝑦) ⇒ 𝐴 = 𝑇−1(𝑒𝑥, 𝑒𝑥+𝑦) = 𝑒𝑥 + 𝐼(𝑒𝑥+𝑦 − 𝑒𝑥). 

2. Let: 

𝑎1 + 𝑎2𝐼 = ln 𝑋 
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⇒ 𝑋 = 𝑥 + 𝐼𝑦 = 𝑒𝑎1+𝑎2𝐼 = 𝑒𝑎1 + (𝑒𝑎1+𝑎2 − 𝑒𝑎1 ) 
⇒ 𝑥 = 𝑒𝑎1 , 𝑦 = 𝑒𝑎1+𝑎2 − 𝑒𝑎1 

⇒ 𝑎1 = ln(𝑥) , 𝑦 = 𝑥 ∙ 𝑒𝑎2 − 𝑥 

⇒ 
𝑦 

+ 1 = 𝑒𝑎2 

𝑥 
𝑥 + 𝑦 

 
Which yields: 

⇒ 𝑎2 = ln ( ) = ln(𝑥 + 𝑦) − ln(𝑥) 
𝑥 

 
Example 5.1: 

Let’s calculate 𝑒𝐼, ln(1 + 𝐼): 

ln(𝑥 + 𝐼𝑦) = ln 𝑥 + 𝐼(ln(𝑥 + 𝑦) − ln(𝑥)) 
 
 

𝑒𝐼 = 𝑒0+𝐼 = 𝑒0 + (𝑒 − 𝑒0) = 1 + (𝑒 − 1)𝐼 
ln(1 + 𝐼) = ln(1) + 𝐼(ln(2) − ln(1)) = ln(2) 𝐼 

 
It is easy to check that the properties of exponential/logarithmic function are still true in the neutrosophic case. 

 

6. Conclusions 

 

In this paper we have studied some concepts of neutrosophic real analysis depending on the one-dimensional 

AH-isometry. We have provided a strict definition of continuity, integration and differentiation of a neutrosophic 

functions with neutrosophic variables. We have presented an algorithm to compute powers of neutrosophic 

numbers to neutrosophic powers. Definitions of trigonometric functions, exponential functions and logarithmic 

functions were presented and lots of their properties had been proved. 

 

Future research directions 

 

Content of this work is very helpful in defining and solving many open problems in neutrosophic theory 

including differential equations, integral equations and probability distribution functions. We aim to do a lots of 

works in these branches in the future. 
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