
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 713 Copyright @ 2021 Authors

S

A Effective Practice to Build Whole Map

Directory-Based Cache Coherence

Protocols with ADirpNB
` Mr.Gandhi Rath*, Mrs. Pragyan paramita panda

Dept. OF Computer Science and Engineering, NIT , BBSR
gandhirath@thenalanda.com *,pragyanparamita@thenalanda.com

Abstract— In shared memory multiprocessors with private caches, directories have been utilised to maintain cache coherency. The

conventional full map directory is intended to track the precise caching state for each shared memory block in an effective and

straightforward manner. Regrettably, it is unsuited for massive multiprocessors due to the inherent directory size growth. Associative

full map directory (ADirpNB), a new directory scheme that lowers the need for directory storage, is what we suggest in this work. In a

centralised linked list fashion, the proposed ADirpNB employs one directory entry to keep track of the sharing information for a

number of memory blocks that are only cached. Allocating, reclaiming, and replacing cache pointers dynamically A full map

directory with decreased directory memory costs is one way to achieve ADirpNB. According to our investigation,

ADirpNB decreases the memory overhead of a conventional full map directory by up to 80% when used with a

typical architectural paradigm. We demonstrate that the proposed approach may be implemented with the proper

protocol modification and hardware addition in addition to having a low memory overhead. Studies using

simulations suggest that ADirpNB can perform as well as DirpNB. Due to the removal of directory overflows,

ADirpNB exhibits more consistent and reliable performance results on applications across a range of memory

sharing and access patterns than limited directory schemes. For moderately large-scale and fine-grain designs, we

think ADirpNB can be used instead of a full map directory.

Index Terms—Cache coherence, directory protocols, shared memory multiprocessors, computer architecture.

✦

1 INTRODUCTION

HARED memory multiprocessors are becoming increas-

ingly popular and attractive platforms for running a

variety of applications, ranging from traditional parallel

engineering and numeric applications to recent commercial

database and Web workloads [4]. Most shared memory

multiprocessors use private or local caches to alleviate the

impact of interconnection network latency on the memory

accesses [30], [49], [29], [35], [28]. Introducing private caches

greatly improves system performance, however, cache

coherency must be maintained if memory blocks are

allowed to reside in different processors simultaneously

[14]. Several cache coherence schemes have been proposed

in the literature to solve this problem [46], [34], [51], [41].

Snoopy protocols [15], [26], [40], [3] maintain data consis-

tency by monitoring memory access traffic and taking

appropriate actions if a memory access violates consistency

in data cache. A snoopy protocol is usually implemented on

shared bus multiprocessors mounted with a limited number

of processors because its performance largely depends on

the broadcasting ability of the system interconnection.

Directory protocols, based on point-to-point commu-

nication, provide an attractive design alternative to

maintain cache coherency in scalable, high performance

● The authors are with the Laboratory for Computer Architecture,

Department of Plectrical and Computer Pngineering, University of Texas
at Austin, Austin, TK 78712. P-mail: {tliS, ljohn}@ece.utexas.edu.

Manuscript received 10 Mar. 2000; revised 10 Dec. 2000; accepted 11 Apr.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IPPPCS Log Number 1116S9.

mailto:tc@computer.org

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 714 Copyright @ 2021 Authors

multiprocessor systems [45]. In this case, a directory entry

is maintained for each memory block to keep track of the

processors which have cached copies and to decide which

action should be taken upon requests to that memory

block. Most medium and large scale shared memory multi-

processors of the current generation, such as SGI Origin

2000 [29], Sequent STiNG [35], Stanford FLASH [28], and

MIT Alewife [2], employ directory protocols to ensure

cache coherence of shared data. The full map directory

[6], which employs a presence bit vector to track the

identities of processors caching a given block, is designed

to be efficient and is the simplest of all directory-based

cache coherence protocols [17]. Unfortunately, the storage

overhead neces- sary to maintain a full map directory

grows rapidly with the number of processors, making it

unscalable.

Many research efforts compromise communication mes-

sage efficiency for directory memory storage by keeping

limited or imprecise sharing information [1], [39], [33], [31]

or employ dynamic and complex directory structures

(doubly linked list, k-ary tree) with customized protocol

operations [23], [8], [38], [48], [51], [9], [20] to resolve this

directory scaling problem. Compared with a traditional full

map directory, these solutions either inflate coherence

message traffic or introduce more latency and complexity

in the protocol controller. For instance, in a limited

directory [1], when the number of processors sharing a

memory block exceeds that of the specified number of

pointers, a directory overflow will occur.
For a p processor full map system, the amount of

directory memory is m · p2 bits, where m is the total number
of blocks in shared memory modules. The memory

0018-9340/01/$10.00 © 2001 IEEE

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 715 Copyright @ 2021 Authors

requirement for a limited directory entry with fixed i

pointers is i · log2 p, where log2 p are the minimal bits to
uniquely present each processor’s identity. Additionally,

each pointer is attached with a valid bit to indicate if it

contains a valid processor number, making a total of p · m ·

(i + i · log2 p) bits dedicated to directory structure.
The linked list directory [23], [48] scales gracefully to

larger numbers of processors with minimal memory

overhead. The directory bits dedicated to storing coher-

ence information in the doubly linked list scheme is p ·

(m + c + 2 · (m + c)· log2 p) since each memory and cache

pointer requires log2 p bits to point a processor, plus an

extra bit to point back to memory (c is the number of cache

blocks in a cache) [34]. Unfortunately, the inherently

complex, sequential, and distributed structure of the linked

list directory can cause several disadvantages [17].

A bit-vector directory can be classified as DiriX using

a nomenclature introduced in [1], where i is the number

of pointers in one directory entry and K is either B or NB,

depending on whether a broadcast is issued when a

cache pointer overflows. Full map directory and limited

directory, therefore, can be symbolized with DirpNB and

DiriNB(i< p).
This paper proposes an associative full map directory

(ADirpNB) which contributes to reducing the overwhelm-

ing memory overhead while maintaining the optimal

performance of a full map directory. By examining multiple

memory block caching artifacts, we find that directory

memory overhead can benefit from associating a shared

directory entry with a set of exclusively cached memory

blocks, i.e., blocks that are potentially mapped into the same

cache line or the same cache set, depending on the cache

organization.

The proposed directory has the following features that

distinguish this work with previous studies: 1) It uses one

directory entry to track multiple memory blocks caching

status simultaneously by creating and maintaining multiple

centralized linked lists; 2) by exploiting caching exclusive-

ness of multiple memory blocks, ADirpNB captures

compact yet exact sharing information for each memory

block, thus makes an effective use of directory memory;

3) by implementing dynamic cache pointer allocation,

reclamation, and replacement hints, ADirpNB can achieve

competitive performance with a traditional full map

directory.

This paper examines the quantitative efficiency of the

proposed cache coherence protocol on a cache coherent

nonuniform memory access (CC-NUMA) machine from the

perspective of both memory overhead, coherence traffic,

and execution performance. Our performance evaluation is

based on SimOS [18], a complete system simulation plat-

form running multiprogramming applications SPLASH-2.

The analysis indicates that, on a typical architecture,

ADirpNB reduces the memory overhead of a traditional

full map directory by up to 70-80 percent. For some memory

and cache configurations, ADirpNB is even more memory

efficient than inexpensive limited directories, such as

Dir4NB and Dir8NB. By eliminating the cache pointer

overflows due to limited directory entries (or pointers) and

sequential invalidations by traversing the distributed linked

TABLE 1

Notations Used to Explain the Proposed Scheme

list through underlying interconnection network, the

proposed scheme potentially has lower coherence message

traffic and protocol controller latency.

Simulation studies indicate, on a 16-processors CC-

NUMA system, ADirpNB results in a competitive

performance with DirpNB. Compared with limited direc-

tory schemes, ADirpNB shows more stable and robust

performance results on applications across a spectrum of

memory sharing and access patterns due to the elimination

of directory overflows. We believe that ADirpNB can be

employed as a design alternative of full map directory for

moderately large-scale and fine-grain shared memory

multiprocessors.
The remainder of this paper is organized as follows: The

detailed rationale of our proposed associative full map

directory is described in Section 2. Section 3 examines the

memory reduction efficiency of the proposed technique.

Section 4 describes our experimental methodology and

presents results from the simulation studies. Related work

is discussed in Section 5. Finally, concluding remarks

appear in Section 6.

2 THE PROPOSED ASSOCIATIVE FULL MAP

DIRECTORY

This section introduces a memory-efficient arrangement of

directory bits, called the associative full map directory. Our

new approach is based on the observation that a traditional

full map directory allocates a static, redundant, yet sparsely

utilized bit vector for each memory block, ignoring the

potential exclusiveness of multiple memory blocks due to

the implication of cache mapping artifacts. By exploiting

caching exclusiveness, directory memory requirement can

benefit from associating a dynamic, shared directory entry

with multiple memory blocks. Our proposed associative full

map directory derives its name from the perspective that

each directory entry has the ability to keep track of and

maintain precise sharing information for multiple memory

blocks simultaneously. To clarify the proposed scheme

efficiently, we define a set of notations used in our

illustration (see Table 1).

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 716 Copyright @ 2021 Authors

0 1×1,024 2×2,024 1,023×1,024

 }

Fig. 1. Structure of associative full map directory. (a) Mapping scheme between caching exclusive shared memory blocks and directory entries. (b)

Multiple cache linked lists in a directory entry. (c) Before cache 2 is inserted in the linked list. (d) After cache 2 is inserted in the linked list. (e)

Invalidation message transverse linked list one-by-one.

 Associative Full Map Directory for Direct
Mapped Cache

For simplicity, we first introduce the proposed scheme for

direct mapped caches and then extend to more complicated

set-associative caches. For a direct mapped cache, the

mapping artifact, which translates a memory block to a

cache line, is ƒ : MBi → CLj, where j = i mod n. The

capacity ratio r determines how many memory blocks can

exclusively be mapped into a specific cache line. If, at any

point t in time, a memory block MBy is cached by Cx, we

note it as MBy ∈ Cx(t). Otherwise, we note it as

MBy /∈ Cx(t). Assuming 16 MB of memory per module, a
16 KB direct mapped cache, and a cache line size of 16 bytes,

we have n = 210, m = 220, and r = 1, 024. Note that Ø0 =
MB ,MB ,MB , ..., MB is the com-

This rule implies that, in a multiprocessor system with p

direct mapped caches, the maximum number of cached

copies of memory blocks which belong to a given caching

exclusive set Øi is p, the number of caches (processors) in

the system. Moreover, 6MBp, 6MBq ∈ Øi (p /= q), at any

point t in time, if MBp ∈ Cx(t) and MBq ∈ Cy(t), we have

x /= y. These features guarantee that memory blocks falling
into the same caching exclusive set actually do not compete

for the same cache pointer, even if there are only the fixed p

cache pointers for the entire set of memory blocks. Hence, it

is economical and safe to allocate total p cache pointers for

the r memory blocks in Øi.

Fig. 1 illustrates the structure of associative full map

directory, including the mapping rationale from caching

exclusive sets to directory entries and coherence operations

plete set of memory blocks that can potentially be mapped

into cache line CL0.

We mark Ø0 as the set of caching exclusive
memory blocks with respect to CL0. More formally,

ƒ

if MBy ∈ Cx(t) and MBy —→ CLi, i.e., MBy ∈ Øi, then

6MBq ∈ {Øi — MBy}, we have MBq /∈ Cx(t), where Cx
is the cache in which MBy is present. Given a case

that memory block MBy is cached by n processors at

point t in time, e.g., MBy ∈ C1(t), . . . ,MBy ∈ Cn(t),

MBy /∈ Cn+1(t), . . . ,MBy /∈ Cp(t), and MBy ∈ Øi, we have

6MBq ∈ {Øi — MBy}, MBq /∈ C1(t), . . . ,MBq /∈ Cn(t). That

is, memory blocks in set {Øi — MBy} are at most cached by

Cn+1(t), . . . , Cp(t) (p-n) caches.

directory entry is comprised of head pointer fields

H1, H2, . . . , Hr and cache pointer fields C1, C2, . . . , Cp. A

head pointer is allocated for each memory block within a

shared memory module and is used to indicate the first

item in the sharing list of that block. A cache pointer, which

serves as a forwarding linker, is used to store the next cache

identifier in that list. Either a head or a cache pointer

consumes log2 p + 1 bits since each of them requires log2 p
bits to point to a processor, plus an extra valid bit to indicate

if it contains a valid processor pointer. To clarify our

illustration, we mark each memory block with a specific

filling pattern and a specific shade pattern in Fig. 1.

Memory blocks marked with the same filling pattern fall

manipulated on a directory entry. As shown in Fig. 1, each

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 717 Copyright @ 2021 Authors

into the same caching exclusive set and, hence, are mapped

into the same directory entry. Memory blocks marked with

the same shade pattern are contiguous in addressing space

and are uniformly distributed among different directory

entries.

Following this rule, the m memory blocks in a shared

memory module can uniquely be mapped into n directory

entries, each of which has r head pointers and p cache

pointers. Recall m equals n × r in our definition. In each
directory entry, the p cache pointers are dynamically

allocated and reclaimed for the clustered r head pointers,

which represent a complete caching exclusive memory

block set. Indexing of the head pointer for a given memory

block, although not as explicit as that in the case of

traditional full map directory, is straightforward and needs

fairly simple hardware. As shown in Fig. 1a, the n bit index

field in physical memory address is used to find the

directory entry allocated for the corresponding caching

exclusive memory block set (step 1 in Fig. 1a). The r bit tag

field is then applied to select a specific head pointer

allocated for that memory block (step 2 in Fig. 1a). Fig. 1a

shows an example of how to find the head pointer for

memory block MBn+2.
Sharing a memory block with different processors causes

the directory controller to construct and maintain a

directory memory-based linked list with a head pointer

dedicated to that memory block. Since a shared directory

entry is used to serve a set of memory blocks, the sharing

behavior of these memory blocks may produce several

linked lists simultaneously. Fig. 1b shows a case in which a

memory block (indicated by H1) has copies in caches 1, p-1,

2, and another memory block (indicated by H2) has copies

in caches p and S. Due to the caching exclusiveness of these

memory blocks, the p cache pointers in this directory entry

can be shared effectively and safely by the r memory blocks.

As mentioned before, the proposed associative full map

directory constructs and maintains the precise sharing

information for multiple memory blocks in a linked list

style. Fig. 2 highlights the directory memory manipulations

that should be taken upon a memory access. Fig. 2a shows a

procedure for inserting a new item into linked list when a

shared read miss is invoked. Fig. 2b shows a procedure

called invalidate(cache) to perform invalidation upon a write,

where cache refers to the processor requesting this write

operation. The traversal through the list can be performed

more effectively within directory memory instead of issuing

remote cache accesses through the slower interconnection
network.

Fig. 1c, Fig. 1d, and Fig. 1e illustrate the insertion and
invalidation operations in a graphic style. In Fig. 1c, the

given memory block (pointed by H1) is initially cached by
processors 1 and p-1. Therefore, the initial values of pointers

H1, C1, Cp—1 are 1, p-1, -1. Fig. 1d shows that, when
processor 2 accesses directory entry due to a shared read

miss, it is inserted as the new head of that linked list. Note

that: 1) H1 points to the most recent requestor, 2) C2 now

serves as forward pointer of H1, 3) the remainder of the

linked list is unchanged. When a write to that block occurs,

invalidation messages are sent to those caches present in the

linked list by walking through all the items until it meets an

Fig. 2. Procedures used in the proposed scheme to implement (a) insert

and (b) invalidate operation.

invalid pointer, which indicates the end of that list (see

Fig. 1e). After invalidation, the linked list has only one item

that owns the exclusive copy of that memory block. The

invalidated cache pointers are reclaimed to the free list for

future use.

In associative full map directory, all cache pointers are

dynamically allocated and reclaimed. Exploiting the cach-

ing exclusiveness of memory blocks ensures the collision-

free characteristic of sharing the fixed p cache pointers

among r memory blocks. However, this ability depends on

keeping accurate and up-to-date sharing information and

does come at a cost. Since there are only p cache pointers, it

is possible to run out of pointers if the directory controller

does not reclaim a pointer after a memory block has been

replaced from the cache.

The proposed scheme, like other dynamic pointer

allocation protocols [17], makes use of replacement hints

to prevent this pointer exhaustion. Replacement hints

complicate design by requiring that the system handle an

additional type of message. However, it reduces the

number of invalidation and invalidation acknowledgments

by only sending coherence messages to the actual sharing

processors. Associative full map directory uses replacement

hints to locate the replaced item and remove it from the list.

Due to the sequential nature of a linked list, time spent on

searching a given item can be Θ(n), where n is length of the

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 718 Copyright @ 2021 Authors

Fig. 3. The proposed efficient replacement algorithm. (a) Initial state of a linked list. (b) Replacement hint is compared with cache pointers in the

linked list to find predecessor. (c) Replacement hint is applied to cache pointer array to select the successor of replaced cache. (d) Removing the

replaced node from the linked list by updating its predecessor. (d) Final state of linked list after replacement.

inquired linked list. In our proposed scheme, this searching

cost can be reduced to Θ(1) since the entire linked list is
stored in one directory entry instead of being distributed

among different caches. In this paper, we introduce an

efficient replacement algorithm for our proposed scheme.

Fig. 3 shows an example of how the efficient replacement

algorithm works. Initially, the four cache items (i.e., caches

2, 5, 3, and 6) are scattered throughout the cache pointer

array and linked with each other, as shown in Fig. 3a. When

a replacement in cache 3 occurs, a replacement hint is sent

to the corresponding directory entry. The directory con-

troller uses this information to compare all cache pointers to

find the predecessor (cache 5) of the replaced cache item

(cache 3) in the linked list, as shown in Fig. 3b. Meanwhile,

the replacement hint is applied to index the successor

(cache 6) of the replaced cache item (see Fig. 3c). As a result,

updating the predecessor with the identity of its successor

actually performs removal of the replaced node from the

linked list, as shown in Fig. 3d. The unraveled cache pointer

should be reclaimed to the free list for future use.1

An implication of the above replacement algorithm is

that it requires that the replacement hints arrive before the

request from the new sharing processor. In a network that

allows message reordering, a request could bypass a

replacement hint, leaving the directory in a transient state

where more pointers are required than are available. In

such a case, the directory controller can send NAck and

retry signals to the sharing processor until it performs the

necessary directory entry reclamation and then allows the

new sharing processor to be added to the linked list.

Alternatively, the out of order requests could be buffered

and serialized through the directory. Our proposed scheme

uses NAck/retry solutions for simplicity since messages

will frequently arrive in order [44].

Our proposed directory can be symbolized by ADirpNB,

where A represents the associative directory because, in this

case, a directory entry is associated with and served for

1. Fig. 3 shows a case where the replaced item is in the middle of a linked

list. The replacements of the head pointer and tail pointer, as two special
cases, can be handled in a similar way.

multiple memory blocks. DirpNB is derived from the

perspective that this scheme uses dynamic cache pointer

allocation, reclamation, and replacement hints to emulate a

full map directory with optimal performance.

The directory memory manipulations described above

can be either hardwired in a custom coherence controller

(HWC) or implemented as a software-based protocol

handler executed by a dedicated protocol processor (PP)

[36]. The coherence protocol of ADirpNB can be tailored

from a traditional full map directory and augmented with

the specific directory operations described above. This

feature can facilitate protocol verification and thus shorten

hardware development time.

 Associative Full Map Directory for Set
Associative Cache

The proposed scheme can be extended easily to fit set

associative caches. In a k-way set associative cache, a

memory block is mapped into a given cache set in a

modulo fashion, but may be hashed in any one of the k

cache lines within a set. Therefore, given p set associative

caches in shared memory multiprocessors, at any point t in

time, the copies of the memory blocks which can be

mapped into the same cache set are no more than kp,

where p is the number of caches and k is cache associativity.

Similarly, we can associate a shared directory entry with

those memory blocks that are mapped into the same cache

set. The associative full map directory for the set associative

cache has the structure illustrated in Fig. 4.

As shown in Fig. 4, each directory entry is comprised of
head pointers (H1, H2, . . . , H&) and a cache pointer matrix

Cp×h. The symbol & is defined as the number of memory
blocks which can be potentially mapped into the same

cache set in a memory module. Since those memory blocks

are caching exclusive with respect to the same cache set

(instead of to the same cache line), the cache pointer array

used in the direct-mapped cache is replaced by a cache

pointer matrix to handle the situation that several memory

blocks may simultaneously be present in one processor’s

cache.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 719 Copyright @ 2021 Authors

x p x p

Fig. 4. Directory structure of ADirpNB for set-associative caches.

Fig. 5 shows a snapshot of a directory entry at the

moment that a memory block (represented by H1) is cached

by processor 1, 3, and p and another memory block

(represented by H2) is cached by processor 1, 2, and p.

Note that associative hardware search for replacement in

set-associative caches needs to be scaled linearly with

associativity.

3 EFFICIENCY OF DIRECTORY MEMORY REDUCTION

 Direct Mapped Cache

For simplicity, we first consider directory memory over-

head of ADirpNB with direct-mapped cache configura-

tions and then extend to a set-associative case. To

evaluate the protocol memory efficiency of the proposed

scheme and its sensitivity to various memory and cache

configurations, we introduce a notation Nx(.), referred to
as memory overhead for a given directory scheme in a
memory module. Thus, we have: Nx(DirpNB)= mp and

Fig. 6. Impact of memory cache configurations on memory overhead

reduction ratio (MORR).

the system. As described in Section 2, r is the capacity ratio

of a shared memory module and a cache, i.e., r = m/n.
The memory overhead reduction ratio (MORR) of

directory scheme DirA to directory scheme DirB can be

defined as MORR(DirA/DirB)= 1 — Nx(A)/Nx(B). Thus,
we have

MORR(ADirpNB/DirpNB)

= 1 — (log2 p + 1) · (m + np)/(mp).

Fig. 6 illustrates the impact of different memory cache

configurations on MORR. It is seen that, for a given p, an

increase in r improves MORR since a directory entry can be

shared with more memory blocks as r grows. With a given

memory cache mapping configuration, MORR increases as

p grows and starts to decrease for high values of p. Note that

when r ≥ 32, the reduction of MORR becomes less sensitive
to the growth of system size because the high associativity

between multiple memory blocks and a directory entry can
efficiently hide memory expansion caused by the increase

of number of processors. For example, given r = 128,
MORR equals 0.84, 0.90, and 0.90 when p is equal to 64,

256, and 4,096. This optimistic result implies that the

proposed scheme can be applied to large systems.
Note that, for a given MORR 2, we have r =

N (ADir NB)= m · [(log p + 1)· (1 + p/r)]. N (ADir NB)
 p·(log2 p+1)

(r> 0). The value of r can be computed to

can be expressed as (log2 p + 1)(m + pn), which indicates
that one part is linear with the memory size m and another

part is linear in size with the total amount of cache (pn) in

Fig. 5. Cache linked lists in a shared directory entry.

investigate the minimum required memory module to
cache capacity ratio in order to yield any advantage by

justifiably employing ADirpNB. From the standpoint of
implementation, r is power of 2. Fig. 7 examines the impacts

of 2 and p on r, the minimal required memory module to

cache capacity ratio given MORR = 2. It is seen that, in
general, an increase in 2 naturally increases r for a given p.
Fortunately, 2 does not have a significant effect on r

provided that 0.1 < 2 < 0.9 and p goes from 64 to 4,096. If

we assume that typical cache sizes are in the range of 64KB

words to 256KB words and a typical memory module may

contain from 2MB words to 16MB words [34], then the

typical values of r will fall into a range of 8 to 256.

Fig. 7 shows that when r falls into this range, 2 can be as

high as 0.9. This observation implies that, with optimistic

memory module and cache configurations, ADirpNB can

(1—2)·p—(log2 p+1) 2

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 720 Copyright @ 2021 Authors

&p

&

rp

rp rp

pointer matrix. Also, a valid bit is attached with each

pointer to indicate whether it is pointing to a valid cache.

The MORR of ADirpNB for set-associative caches can be

expressed as 1 — &(log2 ph+1)+ph(log2 ph+1)
. Recall & can be

expressed as hr, i.e., & = hr, where k is the set size and r is

the capacity ratio of memory module and cache. When

h = 1, & = r and the directory structure shown in Fig. 4

equates with the directory structure described in Fig. 1a. For

a k-way set associative cache, MORR can be expressed as

1 — (r+p)·(log2 p+1) — (r+p) log2 h
. Note that the first two terms are

Fig. 7. Impact of p and 2 on r.

help to reduce the directory memory overhead by 90 percent

compared with DirpNB. Fig. 7 shows that, in general, r =
64 is sufficient to reduce 70-80 percent of directory memory

overhead.

Fig. 8 provides directory memory overhead comparison

of ADirpNB and three inexpensive limited directory

schemes, namely Dir4NB, Dir8NB, and Dir16NB. To

provide a fair comparison, we present only cases where

limited directory consumes less directory memory than a

full map scheme. ADirpNB is seen to be more economical

than even limited directories. The improvement does

deteriorate with higher p. For example, compared with

Dir4NB, MORR is 0.63, 0.5, and 0.25 when r = 64 and p
equals 32, 64, and 128. For a given p, increase of r will

improve MORR. For example, given p = 64, MORR in-
creases from 0.25 to 0.73 when r grows from 32 to 1,024.

Given p = 128 and r = 64, MORR are 0.25, 0.63, and 0.81 for

Dir4NB, Dir8NB, and Dir16NB.

 Set Associative Cache

The directory memory overhead of ADirpNB with set-

associative cache configuration (in a shared memory

module) is m [&(log2 ph + 1)+ ph(log2 ph + 1)] since the head

pointers of a directory entry consumes &(log2 ph + 1) bits

and ph(log2 ph + 1) bits are used for storing the cache

identical to MORR in the case of direct-mapped caches. The

set associative caches, unfortunately, introduce a factor
(r+p) log2 h

, which decreases the memory overhead savings.

Typically, k ranges from 2 to 16. Fig. 9 illustrates the impact

of set associativity k and p on MORR. As shown in this

figure, the increase of k does decrease MORR for a given p

and r. Fortunately, given r ≥ 64, the MORR drops less than

0.1 when k goes from 2 to 16.

The results in Fig. 9 indicate that the amount of state

required by ADirpNB depends on the amount of associa-

tivity in the system and MORR does not scale well on large

and highly associated (with small value in r and high value

in k) cache configurations. This implies that ADirpNB is not

quite suitable for designs in which large fully associative

caches (e.g., 4M, 32-way remote access cache) are used to

eliminate capacity and conflict misses. In such cases, a

COMA-based protocol [47] may provide more design trade-

off. Fortunately, even if the cache is only 2 or 4-way set-

associative, added structures, such as victim caches [25],

prefetch buffers, write-back buffers, and noninclusive

L1/L2 caches, can increase the effective associativity of

the system drastically. Despite the above limitation,

ADirpNB still provides some optimization on implement-

ing a full-map directory based coherence protocol for fine-

grain physical shared memory.

In the proposed scheme, each memory block is

mapped to a home node which keeps a directory entry

for memory blocks exclusively mapped to a cache line or

a cache set. One implication of the proposed scheme is

that directory hardware is dependent on the cache size

Fig. 8. Directory memory overhead comparison of associative full map directory and limited directories Dir4NB, Dir8NB, and Dir16NB.

928 Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 721 Copyright @ 2021 Authors

Fig. 9. Impact of cache set associativity on MORR.

and its associativity, eliminating some of the flexibility in

allowing users to choose and upgrade cache sizes in their

systems. Nevertheless, the relatively low memory over-

head still makes it an attractive design alternative.

Additionally, since the number of entries in this directory

is small, it can be implemented in fast SRAM instead of

slower DRAM, which may help to reduce directory

information access time. This access time is in the critical

path that determines the latency seen by the processor for

many types of memory references [11].

4 PERFORMANCE EVALUATION

This section evaluates the performance of the proposed

directory scheme quantitatively. We compare ADirpNB

with a limited nonbroadcast, a limited broadcast, a coarse

vector, and a dynamic pointer directory running on a CC-

NUMA system with applications from the SPLASH-2 suite.

 Experimental Methodology and Architectural
Assumptions

The experimental platform used to evaluate the above

directory protocols is SimOS [42], [19], a complete

simulation environment that models hardware compo-

nents with enough detail to boot and run a Silicon

Graphics IRIX5.3 OS. SimOS includes multiple processor

simulators (Embra, Mipsy, and MXS) that model the CPU at

different levels of detail and supports simulation for both

uniprocessor and multiprocessor architectures [18]. The

performance results of this study are generated by Mipsy,

which models a single-issue pipelined processor with a one-

cycle result latency and a one-cycle repeat rate [19].

We modify SimOS numa memory model by porting the

proposed scheme and other examined directory protocols.

The default cache coherence protocol for numa model is a

traditional full map directory. All simulated directory

schemes use invalidation-based protocol and replacement

hints. Our simulator can accurately model memory con-

troller and DRAM, directory controller and directory

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 722 Copyright @ 2021 Authors

× + +

TABLE 2
Simulation Parameters and Architectural Assumptions

memory, network interface, and contention for these

resources. The memory system is sequentially consistent.

We configure SimOS to simulate a CC-NUMA multi-

processor composed of 16 nodes connected by a network

with fixed delay. Each node includes a 200 MHz compute

processor with 32 KB split L1 and 1MB L2 caches, a portion

of globally shared memory and directory, a directory

controller implemented with simulated directory protocol,

and a network interface. All caches are 2-way associative

LRU caches with write miss allocation. Main memory

consists of a total 256 MB DRAM with a 10-cycles access

time. A memory access is local to a node if the accessed

memory is allocated within the referring node. References

that are not local to a node are classified as remote.2 In our

each studied SPLASH-2 benchmark. All the benchmarks are
compiled with MIPSpro CC compiler with optimization

level —O2.

 Simulation Results

The effectiveness of the ADir16NB directory scheme and its

impact on the system performance are compared with those

of a fully mapped Dir16NB, a limited nonbroadcast

Dir4NB, a limited broadcast Dir4B, a coarse vector

Dir2CV2,3 and a dynamic pointer allocation directory DynP.

The DynP scheme is assumed to contain 1K pointer/link

store entries and is simulated based on Simoni’s model [44].

Fig. 10 shows directory overflow characteristics (mea-

sured by memory system traffic) that the studied directory

organizations produce for each of the applications. Traffic is

calculated as described in Section 4.1 and is normalized to

the traffic produced by the Dir16NB. Fig. 10 illustrates that

Dir4NB yields the largest number of memory traffic

compared with other directory schemes. In the Dir4NB

scheme, the directory makes room for an additional

requestor by invalidating one of the caches already sharing

the block. This results in an increased number of misses and

an increase in the data and coherence traffic. For applica-

tions that are well-suited to limited-pointer schemes (such

as Water), the traffic is uniformly low for all directory entry

organizations. On applications with a large fraction of

mostly read data (such as Barnes and FMM), the explosion

in memory system traffic caused by the nonbroadcast

Dir4NB can be as high as 960 percent and 700 percent,
respectively.

The broadcast scheme Dir B outperforms Dir NB on all
4 4

simulation study, headers for data packets and all other

overhead packets (e.g., remote data request message,

invalidations, acknowledgments, replacement hint, and

NAck) are assumed to be 8 bytes long. The simulation

parameters, architectural assumptions, and no-contention

latencies of memory accesses and directory operations are

summarized in Table 2 and Table 3. These latencies are set

to be consistent with the relative processor, memory, and

network speeds of the simulated machine.

Cycle-by-cycle simulation of the described architecture is

performed. The instruction and data accesses of both

applications and OS are modeled [32]. Because directory

protocols vary the execution behaviors of applications by

influencing their communication characteristics, an impli-

cation in comparing the performances of different directory

protocols is to ensure that each simulation does the same

amount of work. For this reason, the entire execution of

each application is simulated to provide a fair comparison.

In this study, we use nine benchmarks, which cover a

spectrum of memory sharing and access patterns from the

SPLASH-2 suite [50], to evaluate the performance of

different directory protocols. The applications and the input

data/problem size are listed in Table 4. We use m4 macro

preprocessor and Argonne National Laboratories (ANL)

parmacs macros to automatically generate parallel code of

2. The minimum local miss time is
2 BUS TIME PILOCAL DC TIME MEM TIME
and the minimum remote miss time is

2 × BUS TIME + PIREMOTE DC TIME + NILOCAL DC TIME-

+NIREMOTE DC TIME + MEM TIME + 2 × NET TIME.

of the studied applications. Nevertheless, visible increases

(2.15 times in Barnes, 2.06 times in FMM, and 1.8 times in

Raytrace) of memory traffic are observed on applications

(e.g., Barnes and FMM) where broadcasts are relatively

frequent. In the Dir4B, when a pointer overflow occurs, the

broadcast bit is set. A subsequent write to this block causes

invalidations to be broadcast to all caches. Some of these

invalidation messages go to processors that do not have a

copy of the block and, thus, the overall memory traffic is

increased. Coarse vector directory Dir2CV2 further reduces

memory traffic by only sending invalidations to a subset of

processors in the system. Like Dir4B, Dir2CV2 can also

inflate memory traffic when broadcast becomes frequent.

For example, in comparison with Dir16NB, a Dir2CV2 can

still yield 1.8 and 1.7 times traffic on benchmarks Barnes

and FMM while showing competitive performance on most

of the remaining applications. Additionally, we expect the

performance gap between broadcast schemes (limited

directory, coarse vector) and a full map directory to widen

with increased number of processors because broadcast

invalidations become increasingly more expensive on large

systems.

Compared with the optimal Dir16NB, the DynP scheme

produces competitive performance on benchmark

Choleksy, FFT, LU, and Water, in which a few cache blocks

are widely shared. In these cases, the use of on-the-fly

directory pointer allocation efficiently reduces directory

3. Dir2CV2 has two 4-bit coarse vectors and each coarse vector bit points
to a region of two processors.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 723 Copyright @ 2021 Authors

TABLE 3
Latencies of Different Memory and Directory Operations

TABLE 4

SPLASH-2 Benchmarks and Input Data/Problem Size

Fig. 10. Normalized memory traffic.

pointer overflows due to the small set of heavily shared

cache lines. For example, less than 5 percent of memory

traffic increases are observed in Choleksy, FFT, and Water.

DynP suffers a performance penalty when it runs out of

directory pointers, as it does on benchmark Barnes and

FMM. On the two benchmarks, the memory traffic caused

by extraneous directory overflows in DynP increases

0.9 times and 0.7 times compared with those on a full

map directory. The competitions on fixed resource, such as

pointer/link store entries, due to the different sharing

patterns of various applications make the performance of

DynP less robust.

By exploiting caching exclusiveness, Dir16NB yields

attractive performance (in terms of memory traffic) across a

spectrum of SPLASH-2 benchmarks. The traffic produced

by Dir16NB is close to the ideal traffic of the Dir16NB for

most applications. The extraneous memory traffic caused by

Dir16NB is due to the NAck and retry messages used to

maintain the exact sharing information in a centralized

linked list style.

Fig. 11 further shows the execution time of the studied

directory schemes normalized to that of the Dir16NB. The

performance results are found to be tightly correlated with

memory traffic patterns shown in Fig. 10. The poor

performance of the Dir4NB, which stems from the largest

directory overflows, is shown on most of the studied

benchmarks. For example, the Barnes and FMM with the

Dir4NB run 6.4 and 5.8 times slower than those with the

Dir16NB. By only increasing invalidation traffic but not the

miss ratio over that of the Dir16NB, Dir4B and Dir2CV2 run

 and 1.18 times slower than Dir16NB on Barnes.

On benchmarks LU, Radix, Cholesky, and Water, more

than 95 percent of the invalidating writes produce only one

invalidation [44]. In such cases, there are a few invalidating

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 724 Copyright @ 2021 Authors

Fig. 11. Normalized execution time.

writes to the blocks which experience directory overflows.

Thus, Dir4B and Dir2CV2 exhibit approximate performance

of the Dir16NB. For benchmarks characterized by many

mostly read and small migratory memory blocks, like FMM

and Raytrace, the performance degradation of the limited

directory schemes is not small due to the fact that the

invalidating writes to the memory blocks of mostly read

nature result in large invalidations. Not surprisingly, the

directory overflow-free ADir16NB and Dir16NB are most

robust and outperform other schemes across a spectrum of

applications with various memory access patterns.

As described before, the ADir16NB requires replacement

hints, NAck, and retry messages to maintain the exact

memory block sharing information while exploiting caching

exclusiveness. The introduction of replacement hints,

NAck, and retry messages, however, could potentially

increase coherency traffic. To understand this implication,

we simulate a Dir16NB without the replacement hint, a

Dir16NB with the replacement hint and ADir16NB. The

performance results of the above three directory schemes

normalized to the traffic produced by a Dir16NB without

replacement hints are shown in Fig. 12. We break traffic

down into five major categories:

1. local data, which is the amount of data transmitted

between processor and local memory,

2. remote data, which is the traffic transferred between

nodes,

3. invalidations and acknowledgments, which are traffic

associated with cache coherence maintenance,

4. replacement hints, which are the amount of messages

used by the bookkeeping of accurate sharing status,

and

5. NAck and retry, which are overhead to avoid

running out of pointers during the transient state

in an associative full map directory.

With the aid of replacement hints in the finite cache run,

the directory knows about all cache replacements and is

able to send fewer invalidations for some invalidating

writes. Such benefit can be found in benchmarks Barnes and

FMM. For other benchmarks, the use of replacement hints

contributes to less than 10 percent of memory traffic

increase. The visible increases are found on benchmarks

Radix, Cholesky, and FFT, which show higher conflict miss

rates [50]. In all studied benchmarks, NAck and retry

messages slightly increase memory traffic. These indicate

that the impact of replacement hints, NAck, and retry

messages is not very detrimental on the total traffic.

5 RELATED WORK

The Stanford DASH [30] and HAL-S1 [49] both implement a

bit-vector protocol. Many hybrid directory schemes have

been proposed as design alternatives of a full map directory

[34]. One example is a pointer cache tagged directory [33]

that organizes cache pointers as a cache, each entry of which

is indexed by an address tag. The tag cache directory [39] is

a variation of the pointer cache idea that uses two levels of

caches in the directory. In both cases, when the directory

cache runs out of space, a free entry has to be created by

randomly choosing an active entry and invalidating the

selected block in the indicated processor. In [21], Ho et al.

Fig. 12. Impact of replacement hint, NAck, and retry messages on traffic.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 725 Copyright @ 2021 Authors

proposed a scheme called in-memory directories to elim-

inate the cost of directories by storing directory entries in

the same memory used for the data that they keep coherent.

ADirpNB is a hybrid between directory cache and linked

list directories and introduces a new efficient directory

configuration between these two. By exploiting cache

exclusiveness, ADirpNB eliminates the need to store a

tagged address for each directory entry and avoids

directory overflows in an elegant manner.

The coarse vector directory [16] incorporates a versatile

directory structure which can be dynamically interpreted,

depending on the data sharing degree of a given memory

block. Due to the introduction of coarseness in sharing

information, invalidation messages may have to be sent to

all processors identified by a unique group, regardless of

whether they have actually accessed or are caching the

block. The SGI Origin 2000 [29] implements a bit-vector/

coarse vector directory where the coarseness transitions

immediately from 1 to 8 above 128 processors.

The LimitLPSS directory, which was implemented in the

MIT Alewife machine [7], combines both hardware and

software to implement a directory protocol. Overflow

pointers are handled by software and the major overhead

is the cost of the interrupts and software processing. For

example, on a 16-processor system, the latency of five

invalidations handled in hardware is 84 cycles, but a

request requiring six invalidations handled by software

intervention needs 707 cycles.

The dynamic pointer allocation scheme [43] is the default

directory organization for the Stanford FLASH multi-

processor. It uses a directory header and a static pool of

data structures, called the pointer/link store, to maintain

precise sharing information in a linked list style. In FLASH

implementation, all linked list manipulations are done in

hardware by a special purpose protocol processor, MAGIC.

Our proposed associative full map directory differs from

this scheme in that: 1) In ADirpNB, a linked list created for

a memory block is stored in one directory entry to facilitate

indexing and replacement; 2) in our proposed scheme, the

number of bits need to be stored for each pointer is log2 p,

which is smaller than that for a pointer/link store, which can

potentially point to a random portion of memory; 3) for the

purpose of good performance, their pointer/link store should

have a number of entries equal to 8 to 16 times the number

of cache lines [44]. In ADirpNB, however, the number of

entries for a directory is only as many as those for a cache.

The Scalable Coherent Interface (SCI) [22], also known as

IEEE Standard 1596-1992, is a typical linked list-based

directory protocol. The basic SCI uses doubly linked lists

that are distributed across the nodes. Various derivatives of

the SCI protocol are used in several machines, including the

Sequent NUMA-Q [35], HP Exemplar [5], and Data General

Aviion [13]. The key trade-off is storage requirement,

controller occupancy, number of network transactions,

and serialization latency. Several SCI extensions [24], [27]

have been proposed to help parallelized directory opera-

tions and reduce invalidation latency. The proposed

ADirpNB is generally simpler than doubly linked list based

schemes.

The Scalable Tree Protocol (STP) [38] proposed by

Nilsson and Stenströ m constructs and maintains the caches

in the sharing set of a memory block in a tree structure. The

STP guarantees logarithmic write latency by always

maintaining an optimal tree structure and exploiting

parallelism in the algorithms. Unfortunately, this approach

sacrifices message efficiency and low read latency in order

to construct and maintain a balanced tree, making it

unsuitable for an application with a smaller degree of data

sharing. The SCI tree extensions [24] is another example of

tree-based protocols.

Agarwal et al. [1] first evaluated the performance of

directory schemes (Dir1NB, Dir0B, and Dir4NB) using

traces generated by the ATUM address tracing tool on a

four processor VAX 8350 running parallel applications, i.e.,

POPS, THOE, and PERO, on MACH. It is hard to compare

our results to theirs because of the differences in both

simulation methodology and benchmarks.

Chapin et al. [10] studied the memory system perfor-

mance of IRIX 5.3 on CC-NUMA multiprocessors and

concluded that OS data accesses do not follow the patterns

discovered in application reference streams that motivated

the design of limited directory schemes. However, they did

not show the impact of different directories on CC-NUMA

architecture quantitatively as we do.

More recently, Michael et al. [36] studied the perfor-
mance of a full map directory cache protocol with

alternative coherence controller architectures on a 4 × 16
CC-NUMA system. They found that the occupancy of
coherence controllers can be a bottleneck for applications

with high communication requirements (i.e., ocean, radix,

and FFT). Dual protocol engines improve performance by

up to 18 percent (with HWC implementation) and

30 percent (with PP implementation) relative to the single

protocol engine. Our proposed scheme has simplified and

atomic directory operations and can be implemented with

either an HWC or a PP.

Dahlgren et al. [12] evaluate the combined performance

gains of several extensions to a directory-based invalidation

protocol, namely, adaptive sequential prefetching (P),

migratory sharing optimization (M), and competitive-

update (CW) mechanism. They found that the performance

of a directory protocol augmented by appropriate exten-

sions (e.g., P+CW, P+M) can eliminate a substantial part of

the memory access penalty without significantly increasing

the complexity of either the hardware design or the

software system. These optimizations can be used in

ADirpNB because they are orthogonal to our technique.

Heinrich et al. [17] evaluate the performance of four

scalable cache coherence protocols, including coarse vector,

dynamic pointer allocation, SCI, and COMA protocol, using

SimOS Mipsy and FlashLite simulators. They found that the

optimal protocol changes for different applications and can

change with processor count, even within the same applica-

tion. Wood et al. [51] explored the complexity of implement-

ing directory protocols by examining their mechanisms

ranging from directory primitive operations to network

interfaces. It is found that, with increasing network latencies,

the performance effect of directory operation overhead

decreases, which provides the opportunity to sequence

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 726 Copyright @ 2021 Authors

directory operations in a processor rather than a dedicated

directory controller.

Nanda et al. [37] studied the impact of applying parallel

mechanisms, such as multiple protocol engines, pipelined

protocol engines, and split request-response streams, on the

occupancy of the coherence controllers. Their experimental

results showed that each mechanism is highly effective at

reducing controller occupancy by as much as 66 percent

and improving execution time by as much as 51 percent on

both commercial and scientific benchmarks.

6 CONCLUSION

This paper proposes a new coherence scheme called

associative full map directory (ADirpNB), which behaves

like a traditional full map directory and gracefully

decreases the directory memory requirement. The associa-

tive full map directory is unique and distinguishes itself

from previous schemes by dynamically examining and

exploiting caching exclusiveness of multiple memory

blocks. Directory bits are dynamically allocated and

reclaimed for a set of caching exclusive memory blocks.

By implementing replacement hints, the proposed techni-

que can emulate a traditional full map directory with lower

memory overhead, fairly simple protocol modification, and

appropriate hardware addition. Our analysis shows that the

directory memory efficiency of the proposed scheme is

promising: On a typical architectural paradigm, ADirpNB

reduces the memory overhead of a traditional full map

directory by up to 70-80 percent. For some optimal memory

and cache configurations, ADirpNB is more memory-

efficient than even inexpensive limited directories such as

Dir4NB and Dir8NB.

We evaluate the performance of the proposed techni-

que by using a SimOS simulation platform that runs the

IRIX5.3 OS and SPLASH-2 applications. Our simulation

results show that, due to the elimination of directory

overflows, the speed up of ADirpNB can be competitive

with that of a DirpNB on the studied workloads. Thus, we

believe that ADirpNB can be employed as a design

alternative of full map directory for moderately large-scale

and fine-grain shared memory multiprocessors.

REFERENCES

[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An
Evaluation of Directory Schemes for Cache Coherence,” Proc. 15th
Ann. Int’l Symp. Computer Architecture, pp. 280-289, 1988.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J.
Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
Alewife Machine: Architecture and Performance,” Proc. 22nd Ann.
Int’l Symp. Computer Architecture, pp. 2-13, 1995.

[3] J.K. Archibald and J.-L. Baer, “Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model,” ACM
Trans. Computer Systems, vol. 4, no. 4, pp. 273-298, Nov. 1986.

[4] L.A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System
Characterization of Commercial Workloads,” Proc. 25th Ann. Int’l
Symp. Computer Architecture, pp. 3-14, 1998.

[5] T. Brewer and G. Astfalk, “The Evolution of the HP/Convex
Exemplar,” Proc. COMPCON Spring ’97: 42nd IPPP CS Int’l Conf.,
pp. 81-86, 1997.

[б] L.M. Censier and P. Feautrier, “A New Solution to Coherence
Problem in Multicache Systems,” IPPP Trans. Computers, vol. 27,
no. 12, pp. 1112-1118, Dec. 1978.

[7] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS
Directories: A Scalable Cache Coherence Scheme,” Proc. Fourth
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IV), pp. 224-234, 1991.

[8] D. Chaiken and A. Agarwal, “Software Extended Coherent Shared
Memory: Performance and Cost,” Proc. 21st Ann. Int’l Symp.
Computer Architecture, pp. 314-324, 1994.

[9] Y. Chang and L.N. Bhuyan, “An Efficient Tree Cache Coherence
Protocol for Distributed Shared Memory Multiprocessors,” IPPP
Trans. Computers, vol. 48, no. 3, pp. 352-360, Mar. 1999.

[10] J. Chapin, S.A. Herrod, M. Rosenblum, and A. Gupta, “Memory
System Performance of UNIX on CC-NUMA Multiprocessors,”
Proc. 1995 ACM SIGMPTRICS Conf. Measurement and Modeling of
Computer Systems, pp. 1-13, 1995.

[11] D.E. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architec-
ture: A Hardware/ Software Approach. Morgan Kaufmann, 1999.

[12] F. Dahlgren, M. Dubois, and P. Stenströ m, “Combined Perfor-
mance Gains of Simple Cache Protocol Extensions,” Proc. 21st
Ann. Int’l Symp. Computer Architecture, pp. 187-197, 1994.

[13] Data General Corp., “Aviion AV 20000 Server Technical Over-
view,”Data General White Paper, 1997.

[14] M. Dubois, C. Scheurich, and F.A. Briggs, “Synchronization,
Coherence, and Event Ordering in Multiprocessors,” Computer,
vol. 21, no. 2, pp. 9-21, Feb. 1998.

[15] J.R. Goodman, “Using Cache Memory to Reduce Processor-
Memory Traffic,” Proc. 10th Ann. Int’l Symp. Computer Architecture,
pp. 124-131, 1983.

[1б] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing Memory and
Traffic Requirements for Scalable Directory-Based Cache Coher-
ence Scheme,” Proc. Int’l Conf. Parallel Processing, pp. 312-321,
1990.

[17] M. Heinrich, V. Soundararajan, J. Hennessy, and A. Gupta, “A
Quantitative Analysis of the Performance and Scalability of
Distributed Shared Memory Cache Coherence Protocols,” IPPP
Trans. Computers, vol. 48, no. 2, pp. 205-217, Feb. 1999.

[18] S. Herrod, M. Rosenblum, E. Bugnion, S. Devine, R. Bosch, J.
Chapin, K. Govil, D. Teodosiu, E. Witchel, and B. Verghese, “The
SimOS User Guide,” http://simos.stanford.edu/userguide/
1998.

[19] S.A. Herrod, “Using Complete Machine Simulation to Understand
Computer System Behavior,” PhD thesis, Stanford Univ., Feb.
1998.

[20] M.D. Hill, J.R. Larus, S.K. Reinhardt, and D.A. Wood, “Coopera-
tive Shared Memory: Software and Hardware for Scalable Multi-
processors,” Proc. Fifth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-V),
pp. 262-273, 1992.

[21] C. Ho, H. Ziegler, and M. Dubois, “In Memory Directories:
Eliminating the Cost of Directories in CC-NUMAs,” Proc. 10th
Ann. ACM Symp. Parallel Algorithms and Architectures, pp. 222-230,
1998.

[22] IPPP Std 1596-1992: IPPP Standard for Scalable Coherent Interface,
New York: IEEE, Aug. 1993.

[23] D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi, “Distrib-
uted-Directory Scheme: Scalable Coherent Interface,” Computer,
vol. 23, no. 6, pp. 74-77, June 1990.

[24] R.E. Johnson, “Extending the Scalable Coherent Interface for
Large-Scale Shared-Memory Multiprocessors,” PhD thesis, Univ.
of Wisconsin-Madison, 1993.

[25] N.P. Jouppi, “Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Ann. Int’l Symp. Computer Architecture, pp. 364-
373, 1990.

[2б] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, and R.G. Sheldon,
“Implementing a Cache Consistency Protocol,” Proc. 12th Ann.
Int’l Symp. Computer Architecture, pp. 276-283, 1985.

[27] S. Kaxiras, “Identification and Optimization of Sharing Patterns
for Scalable Shared-Memory Multiprocessors,” PhD thesis, Univ.
of Wisconsin-Madison, 1998.

[28] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A.
Gupta, M. Rosenblum, and J. Hennessy, “The Stanford FLASH
Multiprocessor,” Proc. 21st Ann. Int’l Symp. Computer Architecture,
pp. 302-313, 1994.

[29] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Ann. Int’l Symp. Computer Architecture,
pp. 241-251, 1997.

http://simos.stanford.edu/userguide/

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 727 Copyright @ 2021 Authors

+

[30] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, and M.S. Lam, “The Stanford DASH
Multiprocessor,” Computer, vol. 25, no. 3, pp. 63-79, Mar. 1992.

[31] T. Li and B.W. Rong, “A Versatile Directory Scheme (Dir2NB L)
and Its Implementation on BY91-1 Multiprocessors System,” Proc.
IPPP Advances on Parallel and Distributed Computing, pp. 180-185,
1997.

[32] T. Li, L.K. John, N. Vijaykrishnan, A. Sivasubramaniam, A.
Murthy, and J. Sabarinathan, “Using Complete System Simulation
to Characterize SPECjvm98 Benchmarks,” Proc. Int’l Conf. Super-
computing, pp. 22-33, 2000.

[33] D.J. Lilja and P.-C. Yew, “Combining Hardware and Software
Cache Coherence Strategies,” Proc. 1991 Int’l Conf. Supercomputing,
pp. 274-283, 1991.

[34] D.J. Lilja, “Cache Coherence in Large-Scale Shared-Memory
Multiprocessors: Issues and Comparisons,” ACM Computing
Surveys, vol. 25, no. 3, pp. 303-338, Sept. 1993.

[35] T.D. Lovett and R.M. Clapp, “STiNG: A CC-NUMA Computer
System for the Commercial Marketplace,” Proc. 2Srd Ann. Int’l
Symp. Computer Architecture, pp. 308-317, 1996.

[3б] M.M. Michael, A.K. Nanda, B.-H. Lim, and M.L. Scott, “Coherence
Controller Architectures for SMP-Based CC-NUMA Multiproces-
sors,” Proc. 24th Ann. Int’l Symp. Computer Architecture, pp. 219-
228, 1997.

[37] A.K. Nanda, A.T. Nguyen, M.M. Michael, and D.J. Joseph, “High-
Throughput Coherence Controllers,” Proc. Sixth Int’l Symp. High
Performance Computer Architecture, pp. 145-155, 2000.

[38] H. Nilsson and P. Stenströ m, “The Scalable Tree Protocol—A
Cache Coherence Approach for Large-Scale Multiprocessors,”
Proc. IPPP Symp. Parallel and Distributed Processing, pp. 498-506,
1992.

[39] B.W. O’Krafka and A.R. Newton, “An Empirical Evaluation of
Two Memory-Efficient Directory Methods,” Proc. 17th Ann. Int’l
Symp. Computer Architecture, pp. 138-147, 1990.

[40] M.S. Papamarcos and J.H. Patel, “A Low Overhead Coherence
Solution for Multiprocessors with Private Cache Memories,” Proc.
12th Ann. Int’l Symp. Computer Architecture, pp. 348-354, 1985.

[41] S.K. Reinhardt, J.R. Larus, and D.A. Wood, “Tempest and
Typhoon: User-Level Shared Memory,” Proc. 21st Ann. Int’l Symp.
Computer Architecture, pp. 325-336, 1994.

[42] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta, “Complete
Computer System Simulation: The SimOS Approach,” IPPP
Parallel and Distributed Technology: Systems and Applications, vol. 3,
no. 4, pp. 34-43, Winter 1995.

[43] R. Simoni and M. Horowitz, “Dynamic Pointer Allocation for
Salable Cache Coherence Directories,” Proc. Int’l Symp. Shared
Memory Multiprocessing, pp. 72-81, 1991.

[44] R. Simoni, “Cache Coherence Directories for Scalable Multi-
processors,” PhD dissertation, Stanford Univ., Oct. 1992.

[45] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A.
Gupta, and J. Hennessy, “Flexible Use of Memory for Replication/
Migration in Cache-Coherent DSM Multiprocessors,” Proc. 25th
Ann. Int’l Symp. Computer Architecture, pp. 342-355, 1998.

[4б] P. Stenströ m, “A Survey of Cache Coherence Schemes for
Multiprocessors,” Computer, vol. 23, no. 6, pp. 12-24, June 1990.

[47] P. Stenströ m, T. Joe, and A. Gupta, “Performance Evaluation of
Cache-Coherent NUMA and COMA Architecture,” Proc. 19th Int’l
Symp. Computer Architecture, pp. 80-91, 1992.

[48] M. Thapar, B. Delagi, and M.J. Flynn, “Linked List Cache
Coherence for Scalable Shared Memory Multiprocessors,” Proc.
Int’l Symp. Parallel Processing, pp. 34-43, 1993.

[49] W.-D. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki, and W.
Wilcke, “The Mercury Interconnect Architecture: A Cost-Effective
Infrastructure for High-Performance Servers,” Proc. 24th Ann. Int’l
Symp. Computer Architecture, pp. 98-107, 1997.

[50] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
sideration,” Proc. 22nd Ann. Int’l Symp. Computer Architecture, pp.
24-36, 1995.

[51] D.A. Wood, S. Chandra, B. Falsafi, M.D. Hill, J.R. Larus, A.R.
Lebeck, J.C. Lewis, S.S. Mukherjee, S. Palacharla, and S.K.
Reinhardt, “Mechanisms for Cooperative Shared Memory,” Proc.
20th Ann. Int’l Symp. Computer Architecture, pp. 156-167, 1993.

