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Abstract— In shared memory multiprocessors with private caches, directories have been utilised to maintain cache coherency. The 

conventional full map directory is intended to track the precise caching state for each shared memory block in an effective and 

straightforward manner. Regrettably, it is unsuited for massive multiprocessors due to the inherent directory size growth. Associative 

full map directory (ADirpNB), a new directory scheme that lowers the need for directory storage, is what we suggest in this work. In a 

centralised linked list fashion, the proposed ADirpNB employs one directory entry to keep track of the sharing information for a 

number of memory blocks that are only cached. Allocating, reclaiming, and replacing cache pointers dynamically  A full map 

directory with decreased directory memory costs is one way to achieve ADirpNB. According to our investigation, 

ADirpNB decreases the memory overhead of a conventional full map directory by up to 80% when used with a 

typical architectural paradigm. We demonstrate that the proposed approach may be implemented with the proper 

protocol modification and hardware addition in addition to having a low memory overhead. Studies using 

simulations suggest that ADirpNB can perform as well as DirpNB. Due to the removal of directory overflows, 

ADirpNB exhibits more consistent and reliable performance results on applications across a range of memory 

sharing and access patterns than limited directory schemes. For moderately large-scale and fine-grain designs, we 

think ADirpNB can be used instead of a full map directory. 

 
Index Terms—Cache coherence, directory protocols, shared memory multiprocessors, computer architecture. 
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1 INTRODUCTION 

HARED memory multiprocessors are becoming increas- 

ingly popular and attractive platforms for running a 

variety of applications, ranging from traditional parallel 

engineering and numeric applications to recent commercial 

database and Web workloads [4]. Most shared memory 

multiprocessors use private or local caches to alleviate the 

impact of interconnection network latency on the memory 

accesses [30], [49], [29], [35], [28]. Introducing private caches 

greatly improves system performance, however, cache 

coherency must be maintained if memory blocks are 

allowed to reside in different processors simultaneously 

[14]. Several cache coherence schemes have been proposed 

in the literature to solve this problem [46], [34], [51], [41]. 

Snoopy protocols [15], [26], [40], [3] maintain data consis- 

tency by monitoring memory access traffic and taking 

appropriate actions if a memory access violates consistency 

in data cache. A snoopy protocol is usually implemented on 

shared bus multiprocessors mounted with a limited number 

of processors because its performance largely depends on 

the broadcasting ability of the system interconnection. 

Directory protocols, based on point-to-point commu- 

nication, provide an attractive design alternative to 

maintain cache coherency in scalable, high performance 
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multiprocessor systems [45]. In this case, a directory entry 

is maintained for each memory block to keep track of the 

processors which have cached copies and to decide which 

action should be taken upon requests to that memory 

block. Most medium and large scale shared memory multi- 

processors of the current generation, such as SGI Origin 

2000 [29], Sequent STiNG [35], Stanford FLASH [28], and 

MIT Alewife [2], employ directory protocols to ensure 

cache coherence of shared data. The full map directory 

[6], which employs a presence bit vector to track the 

identities of processors caching a given block, is designed 

to be efficient and is the simplest of all directory-based 

cache coherence protocols [17]. Unfortunately, the storage 

overhead neces- sary to maintain a full map directory 

grows rapidly with the number of processors, making it 

unscalable. 

Many research efforts compromise communication mes- 

sage efficiency for directory memory storage by keeping 

limited or imprecise sharing information [1], [39], [33], [31] 

or employ dynamic and complex directory structures 

(doubly linked list, k-ary tree) with customized protocol 

operations [23], [8], [38], [48], [51], [9], [20] to resolve this 

directory scaling problem. Compared with a traditional full 

map directory, these solutions either inflate coherence 

message traffic or introduce more latency and complexity 

in the protocol controller. For instance, in a limited 

directory [1], when the number of processors sharing a 

memory block exceeds that of the specified number of 

pointers, a directory overflow will occur. 
For a p processor full map system, the amount of 

directory memory is m · p2 bits, where m is the total number 
of blocks in shared memory modules. The memory 
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requirement for a limited directory entry with fixed i 

pointers is i · log2 p, where log2 p are the minimal bits to 
uniquely present each processor’s identity. Additionally, 

each pointer is attached with a valid bit to indicate if it 

contains a valid processor number, making a total of p · m · 

(i + i · log2 p) bits dedicated to directory structure. 
The linked list directory [23], [48] scales gracefully to 

larger numbers of processors with minimal memory 

overhead. The directory bits dedicated to storing coher- 

ence information in the doubly linked list scheme is p · 

(m + c + 2 · (m + c)· log2 p) since each memory and cache 

pointer requires log2 p bits to point a processor, plus an 

extra bit to point back to memory (c is the number of cache 

blocks in a cache) [34]. Unfortunately, the inherently 

complex, sequential, and distributed structure of the linked 

list directory can cause several disadvantages [17]. 

A bit-vector directory can be classified as DiriX using 

a nomenclature introduced in [1], where i is the number 

of pointers in one directory entry and K is either B or NB, 

depending on whether a broadcast is issued when a 

cache pointer overflows. Full map directory and limited 

directory, therefore, can be symbolized with DirpNB and 

DiriNB(i< p). 
This paper proposes an associative full map directory 

(ADirpNB) which contributes to reducing the overwhelm- 

ing memory overhead while maintaining the optimal 

performance of a full map directory. By examining multiple 

memory block caching artifacts, we find that directory 

memory overhead can benefit from associating a shared 

directory entry with a set of exclusively cached memory 

blocks, i.e., blocks that are potentially mapped into the same 

cache line or the same cache set, depending on the cache 

organization. 

The proposed directory has the following features that 

distinguish this work with previous studies: 1) It uses one 

directory entry to track multiple memory blocks caching 

status simultaneously by creating and maintaining multiple 

centralized linked lists; 2) by exploiting caching exclusive- 

ness of multiple memory blocks, ADirpNB captures 

compact yet exact sharing information for each memory 

block, thus makes an effective use of directory memory; 

3) by implementing dynamic cache pointer allocation, 

reclamation, and replacement hints, ADirpNB can achieve 

competitive performance with a traditional full map 

directory. 

This paper examines the quantitative efficiency of the 

proposed cache coherence protocol on a cache coherent 

nonuniform memory access (CC-NUMA) machine from the 

perspective of both memory overhead, coherence traffic, 

and execution performance. Our performance evaluation is 

based on SimOS [18], a complete system simulation plat- 

form running multiprogramming applications SPLASH-2. 

The analysis indicates that, on a typical architecture, 

ADirpNB reduces the memory overhead of a traditional 

full map directory by up to 70-80 percent. For some memory 

and cache configurations, ADirpNB is even more memory 

efficient than inexpensive limited directories, such as 

Dir4NB and Dir8NB. By eliminating the cache pointer 

overflows due to limited directory entries (or pointers) and 

sequential invalidations by traversing the distributed linked 

 
TABLE 1 

Notations Used to Explain the Proposed Scheme 
 

 
 

list through underlying interconnection network, the 

proposed scheme potentially has lower coherence message 

traffic and protocol controller latency. 

Simulation studies indicate, on a 16-processors CC-

NUMA system, ADirpNB results in a competitive 

performance with DirpNB. Compared with limited direc- 

tory schemes, ADirpNB shows more stable and robust 

performance results on applications across a spectrum of 

memory sharing and access patterns due to the elimination 

of directory overflows. We believe that ADirpNB can be 

employed as a design alternative of full map directory for 

moderately large-scale and fine-grain shared memory 

multiprocessors. 
The remainder of this paper is organized as follows: The 

detailed rationale of our proposed associative full map 

directory is described in Section 2. Section 3 examines the 

memory reduction efficiency of the proposed technique. 

Section 4 describes our experimental methodology and 

presents results from the simulation studies. Related work 

is discussed in Section 5. Finally, concluding remarks 

appear in Section 6. 

 
2 THE PROPOSED ASSOCIATIVE FULL MAP 

DIRECTORY 

This section introduces a memory-efficient arrangement of 

directory bits, called the associative full map directory. Our 

new approach is based on the observation that a traditional 

full map directory allocates a static, redundant, yet sparsely 

utilized bit vector for each memory block, ignoring the 

potential exclusiveness of multiple memory blocks due to 

the implication of cache mapping artifacts. By exploiting 

caching exclusiveness, directory memory requirement can 

benefit from associating a dynamic, shared directory entry 

with multiple memory blocks. Our proposed associative full 

map directory derives its name from the perspective that 

each directory entry has the ability to keep track of and 

maintain precise sharing information for multiple memory 

blocks simultaneously. To clarify the proposed scheme 

efficiently, we define a set of notations used in our 

illustration (see Table 1). 
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Fig. 1. Structure of associative full map directory. (a) Mapping scheme between caching exclusive shared memory blocks and directory entries. (b) 

Multiple cache linked lists in a directory entry. (c) Before cache 2 is inserted in the linked list. (d) After cache 2 is inserted in the linked list. (e) 

Invalidation message transverse linked list one-by-one. 
 

 Associative Full Map Directory for Direct 
Mapped Cache 

For simplicity, we first introduce the proposed scheme for 

direct mapped caches and then extend to more complicated 

set-associative caches. For a direct mapped cache, the 

mapping artifact, which translates a memory block to a 

cache line, is ƒ : MBi → CLj, where j = i mod n. The 

capacity ratio r determines how many memory blocks can 

exclusively be mapped into a specific cache line. If, at any 

point t in time, a memory block MBy is cached by Cx, we 

note   it   as   MBy ∈ Cx(t).   Otherwise,  we   note   it   as 

MBy /∈ Cx(t). Assuming 16 MB of memory per module, a 
16 KB direct mapped cache, and a cache line size of 16 bytes, 

we have n = 210, m = 220, and r = 1, 024. Note that  Ø0 = 
MB ,MB      ,MB      , ..., MB is the com- 

This rule implies that, in a multiprocessor system with p 

direct mapped caches, the maximum number of cached 

copies of memory blocks which belong to a given caching 

exclusive set Øi is p, the number of caches (processors) in 

the system. Moreover, 6MBp, 6MBq ∈ Øi (p /= q), at any 

point t in time, if MBp ∈ Cx(t) and MBq ∈ Cy(t), we have 

x /= y. These features guarantee that memory blocks falling 
into the same caching exclusive set actually do not compete 

for the same cache pointer, even if there are only the fixed p 

cache pointers for the entire set of memory blocks. Hence, it 

is economical and safe to allocate total p cache pointers for 

the r memory blocks in Øi. 

Fig. 1 illustrates the structure of associative full map 

directory, including the mapping rationale from caching 

exclusive sets to directory entries and coherence operations 
 

plete set of memory blocks that can potentially be mapped 

into cache line CL0. 

We   mark   Ø0 as   the   set   of   caching   exclusive 
memory  blocks  with  respect  to  CL0.  More  formally, 

ƒ 

if MBy ∈ Cx(t) and MBy —→ CLi, i.e., MBy ∈ Øi, then 

6MBq ∈ {Øi — MBy}, we have MBq /∈ Cx(t), where Cx 
is the cache in which MBy is present. Given a case 

that memory block MBy is cached by n processors at 

point t   in   time,   e.g.,   MBy ∈ C1(t), . . .  ,MBy ∈ Cn(t), 

MBy /∈ Cn+1(t), . . .  ,MBy /∈ Cp(t), and MBy ∈ Øi, we have 

6MBq ∈ {Øi — MBy}, MBq /∈ C1(t), . . .  ,MBq /∈ Cn(t). That 

is, memory blocks in set {Øi — MBy} are at most cached by 

Cn+1(t), . . .  , Cp(t) (p-n) caches. 

directory entry   is   comprised   of   head   pointer   fields 

H1, H2, . . .  , Hr and cache pointer fields C1, C2, . . .  , Cp. A 

head pointer is allocated for each memory block within a 

shared memory module and is used to indicate the first 

item in the sharing list of that block. A cache pointer, which 

serves as a forwarding linker, is used to store the next cache 

identifier in that list. Either a head or a cache pointer 

consumes log2 p + 1 bits since each of them requires log2 p 
bits to point to a processor, plus an extra valid bit to indicate 

if it contains a valid processor pointer. To clarify our 

illustration, we mark each memory block with a specific 

filling pattern and a specific shade pattern in Fig. 1. 

Memory blocks marked with the same filling pattern fall 

manipulated on a directory entry. As shown in Fig. 1, each 
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into the same caching exclusive set and, hence, are mapped 

into the same directory entry. Memory blocks marked with 

the same shade pattern are contiguous in addressing space 

and are uniformly distributed among different directory 

entries. 

Following this rule, the m memory blocks in a shared 

memory module can uniquely be mapped into n directory 

entries, each of which has r head pointers and p cache 

pointers. Recall m equals n × r in our definition. In each 
directory  entry,  the  p  cache  pointers  are  dynamically 

allocated and reclaimed for the clustered r head pointers, 

which represent a complete caching exclusive memory 

block set. Indexing of the head pointer for a given memory 

block, although not as explicit as that in the case of 

traditional full map directory, is straightforward and needs 

fairly simple hardware. As shown in Fig. 1a, the n bit index 

field in physical memory address is used to find the 

directory entry allocated for the corresponding caching 

exclusive memory block set (step 1 in Fig. 1a). The r bit tag 

field is then applied to select a specific head pointer 

allocated for that memory block (step 2 in Fig. 1a). Fig. 1a 

shows an example of how to find the head pointer for 

memory block MBn+2. 
Sharing a memory block with different processors causes 

the directory controller to construct and maintain a 

directory memory-based linked list with a head pointer 

dedicated to that memory block. Since a shared directory 

entry is used to serve a set of memory blocks, the sharing 

behavior of these memory blocks may produce several 

linked lists simultaneously. Fig. 1b shows a case in which a 

memory block (indicated by H1) has copies in caches 1, p-1, 

2, and another memory block (indicated by H2) has copies 

in caches p and S. Due to the caching exclusiveness of these 

memory blocks, the p cache pointers in this directory entry 

can be shared effectively and safely by the r memory blocks. 

As mentioned before, the proposed associative full map 

directory constructs and maintains the precise sharing 

information for multiple memory blocks in a linked list 

style. Fig. 2 highlights the directory memory manipulations 

that should be taken upon a memory access. Fig. 2a shows a 

procedure for inserting a new item into linked list when a 

shared read miss is invoked. Fig. 2b shows a procedure 

called invalidate(cache) to perform invalidation upon a write, 

where cache refers to the processor requesting this write 

operation. The traversal through the list can be performed 

more effectively within directory memory instead of issuing 

remote cache accesses through the slower interconnection 
network. 

Fig. 1c, Fig. 1d, and Fig. 1e illustrate the insertion and 
invalidation operations in a graphic style. In Fig. 1c, the 

given memory block (pointed by H1) is initially cached by 
processors 1 and p-1. Therefore, the initial values of pointers 

H1, C1, Cp—1 are 1, p-1, -1. Fig. 1d shows that, when 
processor 2 accesses directory entry due to a shared read 

miss, it is inserted as the new head of that linked list. Note 

that: 1) H1 points to the most recent requestor, 2) C2 now 

serves as forward pointer of H1, 3) the remainder of the 

linked list is unchanged. When a write to that block occurs, 

invalidation messages are sent to those caches present in the 

linked list by walking through all the items until it meets an 

 

 
 

Fig. 2. Procedures used in the proposed scheme to implement (a) insert 

and (b) invalidate operation. 

 

invalid pointer, which indicates the end of that list (see 

Fig. 1e). After invalidation, the linked list has only one item 

that owns the exclusive copy of that memory block. The 

invalidated cache pointers are reclaimed to the free list for 

future use. 

In associative full map directory, all cache pointers are 

dynamically allocated and reclaimed. Exploiting the cach- 

ing exclusiveness of memory blocks ensures the collision- 

free characteristic of sharing the fixed p cache pointers 

among r memory blocks. However, this ability depends on 

keeping accurate and up-to-date sharing information and 

does come at a cost. Since there are only p cache pointers, it 

is possible to run out of pointers if the directory controller 

does not reclaim a pointer after a memory block has been 

replaced from the cache. 

The proposed scheme, like other dynamic pointer 

allocation protocols [17], makes use of replacement hints 

to prevent this pointer exhaustion. Replacement hints 

complicate design by requiring that the system handle an 

additional type of message. However, it reduces the 

number of invalidation and invalidation acknowledgments 

by only sending coherence messages to the actual sharing 

processors. Associative full map directory uses replacement 

hints to locate the replaced item and remove it from the list. 

Due to the sequential nature of a linked list, time spent on 

searching a given item can be Θ(n), where n is length of the 
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Fig. 3. The proposed efficient replacement algorithm. (a) Initial state of a linked list. (b) Replacement hint is compared with cache pointers in the 

linked list to find predecessor. (c) Replacement hint is applied to cache pointer array to select the successor of replaced cache. (d) Removing the 

replaced node from the linked list by updating its predecessor. (d) Final state of linked list after replacement. 

 

inquired linked list. In our proposed scheme, this searching 

cost can be reduced to Θ(1) since the entire linked list is 
stored in one directory entry instead of being distributed 

among different caches. In this paper, we introduce an 

efficient replacement algorithm for our proposed scheme. 

Fig. 3 shows an example of how the efficient replacement 

algorithm works. Initially, the four cache items (i.e., caches 

2, 5, 3, and 6) are scattered throughout the cache pointer 

array and linked with each other, as shown in Fig. 3a. When 

a replacement in cache 3 occurs, a replacement hint is sent 

to the corresponding directory entry. The directory con- 

troller uses this information to compare all cache pointers to 

find the predecessor (cache 5) of the replaced cache item 

(cache 3) in the linked list, as shown in Fig. 3b. Meanwhile, 

the replacement hint is applied to index the successor 

(cache 6) of the replaced cache item (see Fig. 3c). As a result, 

updating the predecessor with the identity of its successor 

actually performs removal of the replaced node from the 

linked list, as shown in Fig. 3d. The unraveled cache pointer 

should be reclaimed to the free list for future use.1 

An implication of the above replacement algorithm is 

that it requires that the replacement hints arrive before the 

request from the new sharing processor. In a network that 

allows message reordering, a request could bypass a 

replacement hint, leaving the directory in a transient state 

where more pointers are required than are available. In 

such a case, the directory controller can send NAck and 

retry signals to the sharing processor until it performs the 

necessary directory entry reclamation and then allows the 

new sharing processor to be added to the linked list. 

Alternatively, the out of order requests could be buffered 

and serialized through the directory. Our proposed scheme 

uses NAck/retry solutions for simplicity since messages 

will frequently arrive in order [44]. 

Our proposed directory can be symbolized by ADirpNB, 

where A represents the associative directory because, in this 

case, a directory entry is associated with and served for 

 
1. Fig. 3 shows a case where the replaced item is in the middle of a linked 

list. The replacements of the head pointer and tail pointer, as two special 
cases, can be handled in a similar way. 

multiple memory blocks. DirpNB is derived from the 

perspective that this scheme uses dynamic cache pointer 

allocation, reclamation, and replacement hints to emulate a 

full map directory with optimal performance. 

The directory memory manipulations described above 

can be either hardwired in a custom coherence controller 

(HWC) or implemented as a software-based protocol 

handler executed by a dedicated protocol processor (PP) 

[36]. The coherence protocol of ADirpNB can be tailored 

from a traditional full map directory and augmented with 

the specific directory operations described above. This 

feature can facilitate protocol verification and thus shorten 

hardware development time. 

 Associative Full Map Directory for Set 
Associative Cache 

The proposed scheme can be extended easily to fit set 

associative caches. In a k-way set associative cache, a 

memory block is mapped into a given cache set in a 

modulo fashion, but may be hashed in any one of the k 

cache lines within a set. Therefore, given p set associative 

caches in shared memory multiprocessors, at any point t in 

time, the copies of the memory blocks which can be 

mapped into the same cache set are no more than kp, 

where p is the number of caches and k is cache associativity. 

Similarly, we can associate a shared directory entry with 

those memory blocks that are mapped into the same cache 

set. The associative full map directory for the set associative 

cache has the structure illustrated in Fig. 4. 

As shown in Fig. 4, each directory entry is comprised of 
head pointers (H1, H2, . . .  , H&) and a cache pointer matrix 

Cp×h. The symbol & is defined as the number of memory 
blocks which can be potentially mapped into the same 

cache set in a memory module. Since those memory blocks 

are caching exclusive with respect to the same cache set 

(instead of to the same cache line), the cache pointer array 

used in the direct-mapped cache is replaced by a cache 

pointer matrix to handle the situation that several memory 

blocks may simultaneously be present in one processor’s 

cache. 
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Fig. 4. Directory structure of ADirpNB for set-associative caches. 

 
Fig. 5 shows a snapshot of a directory entry at the 

moment that a memory block (represented by H1) is cached 

by processor 1, 3, and p and another memory block 

(represented by H2) is cached by processor 1, 2, and p. 

Note that associative hardware search for replacement in 

set-associative caches needs to be scaled linearly with 

associativity. 
 

3 EFFICIENCY OF DIRECTORY MEMORY REDUCTION 

 Direct Mapped Cache 

For simplicity, we first consider directory memory over- 

head of ADirpNB with direct-mapped cache configura- 

tions and then extend to a set-associative case. To 

evaluate the protocol memory efficiency of the proposed 

scheme and its sensitivity to various memory and cache 

configurations, we introduce a notation Nx(.), referred to 
as memory overhead for a given directory scheme in a 
memory module. Thus, we have: Nx(DirpNB)= mp and 

Fig. 6. Impact of memory cache configurations on memory overhead 

reduction ratio (MORR). 

 
the system. As described in Section 2, r is the capacity ratio 

of a shared memory module and a cache, i.e., r = m/n. 
The memory   overhead   reduction   ratio   (MORR)   of 

directory scheme DirA to directory scheme DirB can be 

defined as MORR(DirA/DirB)= 1 — Nx(A)/Nx(B). Thus, 
we have 

MORR(ADirpNB/DirpNB) 

= 1 — (log2 p + 1) · (m + np)/(mp). 

Fig. 6 illustrates the impact of different memory cache 

configurations on MORR. It is seen that, for a given p, an 

increase in r improves MORR since a directory entry can be 

shared with more memory blocks as r grows. With a given 

memory cache mapping configuration, MORR increases as 

p grows and starts to decrease for high values of p. Note that 

when r ≥ 32, the reduction of MORR becomes less sensitive 
to the growth of system size because the high associativity 

between multiple memory blocks and a directory entry can 
efficiently hide memory expansion caused by the increase 

of number of processors. For example, given r = 128, 
MORR equals 0.84, 0.90, and 0.90 when p is equal to 64, 

256, and 4,096. This optimistic result implies that the 

proposed scheme can be applied to large systems. 
Note that,   for   a   given   MORR   2,   we   have   r = 

N (ADir NB)= m · [(log p + 1)· (1 + p/r)]. N (ADir NB) 
       p·(log2 p+1)  

 
(r> 0). The value of r can be computed to 

can be expressed as (log2 p + 1)(m + pn), which indicates 
that one part is linear with the memory size m and another 

part is linear in size with the total amount of cache (pn) in 

 
 

 
Fig. 5. Cache linked lists in a shared directory entry. 

investigate the minimum required memory module to 
cache capacity ratio in order to yield any advantage by 

justifiably employing ADirpNB. From the standpoint of 
implementation, r is power of 2. Fig. 7 examines the impacts 

of 2 and p on r, the minimal required memory module to 

cache capacity ratio given MORR = 2. It is seen that, in 
general, an increase in 2 naturally increases r for a given p. 
Fortunately, 2 does not have a significant effect on r 

provided that 0.1 < 2 <  0.9 and p goes from 64 to 4,096. If 

we assume that typical cache sizes are in the range of 64KB 

words to 256KB words and a typical memory module may 

contain from 2MB words to 16MB words [34], then the 

typical values of r will fall into a range of 8 to 256. 

Fig. 7 shows that when r falls into this range, 2 can be as 

high as 0.9. This observation implies that, with optimistic 

memory module and cache configurations, ADirpNB can 

(1—2)·p—(log2 p+1) 2 
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&p 

& 

rp 

rp rp 

pointer matrix. Also, a valid bit is attached with each 

pointer to indicate whether it is pointing to a valid cache. 

The MORR of ADirpNB for set-associative caches can be 

expressed as 1 — &(log2 ph+1)+ph(log2 ph+1) 
. Recall & can be 

expressed as hr, i.e., & = hr, where k is the set size and r is 

the capacity ratio of memory module and cache. When 

h = 1, & = r and the directory structure shown in Fig. 4 

equates with the directory structure described in Fig. 1a. For 

a k-way set associative cache, MORR can be expressed as 

1 — (r+p)·(log2 p+1) — (r+p) log2 h 
. Note that the first two terms are 

 
 
 
 
 

Fig. 7. Impact of p and 2 on r. 

 
help to reduce the directory memory overhead by 90 percent 

compared with DirpNB. Fig. 7 shows that, in general, r = 
64 is sufficient to reduce 70-80 percent of directory memory 

overhead. 

Fig. 8 provides directory memory overhead comparison 

of ADirpNB and three inexpensive limited directory 

schemes, namely Dir4NB, Dir8NB, and Dir16NB. To 

provide a fair comparison, we present only cases where 

limited directory consumes less directory memory than a 

full map scheme. ADirpNB is seen to be more economical 

than even limited directories. The improvement does 

deteriorate with higher p. For example, compared with 

Dir4NB, MORR is 0.63, 0.5, and 0.25 when r = 64 and p 
equals 32, 64, and 128. For a given p, increase of r will 

improve MORR. For example, given p = 64, MORR in- 
creases from 0.25 to 0.73 when r grows from 32 to 1,024. 

Given p = 128 and r = 64, MORR are 0.25, 0.63, and 0.81 for 

Dir4NB, Dir8NB, and Dir16NB. 

 Set Associative Cache 

The directory memory overhead of ADirpNB with set- 

associative cache configuration (in a shared memory 

module) is m [&(log2 ph + 1)+ ph(log2 ph + 1)] since the head 

pointers of a directory entry consumes &(log2 ph + 1) bits 

and ph(log2 ph + 1) bits are used for storing the cache 

identical to MORR in the case of direct-mapped caches. The 

set associative caches, unfortunately, introduce a factor 
(r+p) log2 h 

, which decreases the memory overhead savings. 

Typically, k ranges from 2 to 16. Fig. 9 illustrates the impact 

of set associativity k and p on MORR. As shown in this 

figure, the increase of k does decrease MORR for a given p 

and r. Fortunately, given r ≥ 64, the MORR drops less than 

0.1 when k goes from 2 to 16. 

The results in Fig. 9 indicate that the amount of state 

required by ADirpNB depends on the amount of associa- 

tivity in the system and MORR does not scale well on large 

and highly associated (with small value in r and high value 

in k) cache configurations. This implies that ADirpNB is not 

quite suitable for designs in which large fully associative 

caches (e.g., 4M, 32-way remote access cache) are used to 

eliminate capacity and conflict misses. In such cases, a 

COMA-based protocol [47] may provide more design trade- 

off. Fortunately, even if the cache is only 2 or 4-way set- 

associative, added structures, such as victim caches [25], 

prefetch buffers, write-back buffers, and noninclusive 

L1/L2 caches, can increase the effective associativity of 

the system drastically. Despite the above limitation, 

ADirpNB still provides some optimization on implement- 

ing a full-map directory based coherence protocol for fine- 

grain physical shared memory. 

In the proposed scheme, each memory block is 

mapped to a home node which keeps a directory entry 

for memory blocks exclusively mapped to a cache line or 

a cache set. One implication of the proposed scheme is 

that directory hardware is dependent  on the cache size 

 
 

 
 

Fig. 8. Directory memory overhead comparison of associative full map directory and limited directories Dir4NB, Dir8NB, and Dir16NB. 
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Fig. 9. Impact of cache set associativity on MORR. 
 

and its associativity, eliminating some of the flexibility in 

allowing users to choose and upgrade cache sizes in their 

systems. Nevertheless, the relatively low memory over- 

head still makes it an attractive design alternative. 

Additionally, since the number of entries in this directory 

is small, it can be implemented in fast SRAM instead of 

slower DRAM, which may help to reduce directory 

information access time. This access time is in the critical 

path that determines the latency seen by the processor for 

many types of memory references [11]. 

 

4 PERFORMANCE EVALUATION 

This section evaluates the performance of the proposed 

directory scheme quantitatively. We compare ADirpNB 

with a limited nonbroadcast, a limited broadcast, a coarse 

vector, and a dynamic pointer directory running on a CC-

NUMA system with applications from the SPLASH-2 suite. 

 Experimental Methodology and Architectural 
Assumptions 

The experimental platform used to evaluate the above 

directory protocols is SimOS [42], [19], a complete 

simulation environment that models hardware compo- 

nents with enough detail to boot and run a Silicon 

Graphics IRIX5.3 OS. SimOS includes multiple processor 

simulators (Embra, Mipsy, and MXS) that model the CPU at 

different levels of detail and supports simulation for both 

uniprocessor and multiprocessor architectures [18]. The 

performance results of this study are generated by Mipsy, 

which models a single-issue pipelined processor with a one- 

cycle result latency and a one-cycle repeat rate [19]. 

We modify SimOS numa memory model by porting the 

proposed scheme and other examined directory protocols. 

The default cache coherence protocol for numa model is a 

traditional full map directory. All simulated directory 

schemes use invalidation-based protocol and replacement 

hints. Our simulator can accurately model memory con- 

troller   and   DRAM,   directory   controller   and   directory 
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TABLE 2 
Simulation Parameters and Architectural Assumptions 

 

 

memory, network interface, and contention for these 

resources. The memory system is sequentially consistent. 

We configure SimOS to simulate a CC-NUMA multi- 

processor composed of 16 nodes connected by a network 

with fixed delay. Each node includes a 200 MHz compute 

processor with 32 KB split L1 and 1MB L2 caches, a portion 

of globally shared memory and directory, a directory 

controller implemented with simulated directory protocol, 

and a network interface. All caches are 2-way associative 

LRU caches with write miss allocation. Main memory 

consists of a total 256 MB DRAM with a 10-cycles access 

time. A memory access is local to a node if the accessed 

memory is allocated within the referring node. References 

that are not local to a node are classified as remote.2 In our 

each studied SPLASH-2 benchmark. All the benchmarks are 
compiled with MIPSpro CC compiler with optimization 

level —O2. 

 Simulation Results 

The effectiveness of the ADir16NB directory scheme and its 

impact on the system performance are compared with those 

of a fully mapped Dir16NB, a limited nonbroadcast 

Dir4NB, a limited broadcast Dir4B, a coarse vector 

Dir2CV2,3 and a dynamic pointer allocation directory DynP. 

The DynP scheme is assumed to contain 1K pointer/link 

store entries and is simulated based on Simoni’s model [44]. 

Fig. 10 shows directory overflow characteristics (mea- 

sured by memory system traffic) that the studied directory 

organizations produce for each of the applications. Traffic is 

calculated as described in Section 4.1 and is normalized to 

the traffic produced by the Dir16NB. Fig. 10 illustrates that 

Dir4NB yields the largest number of memory traffic 

compared with other directory schemes. In the Dir4NB 

scheme, the directory makes room for an additional 

requestor by invalidating one of the caches already sharing 

the block. This results in an increased number of misses and 

an increase in the data and coherence traffic. For applica- 

tions that are well-suited to limited-pointer schemes (such 

as Water), the traffic is uniformly low for all directory entry 

organizations. On applications with a large fraction of 

mostly read data (such as Barnes and FMM), the explosion 

in memory system traffic caused by the nonbroadcast 

Dir4NB can be as high as 960 percent and 700 percent, 
respectively. 

The broadcast scheme Dir B outperforms Dir NB on all 
4 4 

simulation study, headers for data packets and all other 

overhead packets (e.g., remote data request message, 

invalidations, acknowledgments, replacement hint, and 

NAck) are assumed to be 8 bytes long. The simulation 

parameters, architectural assumptions, and no-contention 

latencies of memory accesses and directory operations are 

summarized in Table 2 and Table 3. These latencies are set 

to be consistent with the relative processor, memory, and 

network speeds of the simulated machine. 

Cycle-by-cycle simulation of the described architecture is 

performed. The instruction and data accesses of both 

applications and OS are modeled [32]. Because directory 

protocols vary the execution behaviors of applications by 

influencing their communication characteristics, an impli- 

cation in comparing the performances of different directory 

protocols is to ensure that each simulation does the same 

amount of work. For this reason, the entire execution of 

each application is simulated to provide a fair comparison. 

In this study, we use nine benchmarks, which cover a 

spectrum of memory sharing and access patterns from the 

SPLASH-2 suite [50], to evaluate the performance of 

different directory protocols. The applications and the input 

data/problem size are listed in Table 4. We use m4 macro 

preprocessor and Argonne National Laboratories (ANL) 

parmacs macros to automatically generate parallel code of 
 

2. The minimum local miss time is 
2  BUS TIME    PILOCAL DC TIME    MEM TIME 
and the minimum remote miss time is 

2 × BUS TIME + PIREMOTE DC TIME + NILOCAL DC TIME- 

+NIREMOTE DC TIME + MEM TIME + 2 × NET TIME. 

of the studied applications. Nevertheless, visible increases 

(2.15 times in Barnes, 2.06 times in FMM, and 1.8 times in 

Raytrace) of memory traffic are observed on applications 

(e.g., Barnes and FMM) where broadcasts are relatively 

frequent. In the Dir4B, when a pointer overflow occurs, the 

broadcast bit is set. A subsequent write to this block causes 

invalidations to be broadcast to all caches. Some of these 

invalidation messages go to processors that do not have a 

copy of the block and, thus, the overall memory traffic is 

increased. Coarse vector directory Dir2CV2 further reduces 

memory traffic by only sending invalidations to a subset of 

processors in the system. Like Dir4B, Dir2CV2 can also 

inflate memory traffic when broadcast becomes frequent. 

For example, in comparison with Dir16NB, a Dir2CV2 can 

still yield 1.8 and 1.7 times traffic on benchmarks Barnes 

and FMM while showing competitive performance on most 

of the remaining applications. Additionally, we expect the 

performance gap between broadcast schemes (limited 

directory, coarse vector) and a full map directory to widen 

with increased number of processors because broadcast 

invalidations become increasingly more expensive on large 

systems. 

Compared with the optimal Dir16NB, the DynP scheme 

produces competitive performance on benchmark 

Choleksy, FFT, LU, and Water, in which a few cache blocks 

are widely shared. In these cases, the use of on-the-fly 

directory pointer allocation efficiently reduces directory 
 

3. Dir2CV2 has two 4-bit coarse vectors and each coarse vector bit points 
to a region of two processors. 
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TABLE 3 
Latencies of Different Memory and Directory Operations 

 

 
TABLE 4 

SPLASH-2 Benchmarks and Input Data/Problem Size 
 

 

 
Fig. 10. Normalized memory traffic. 

 

pointer overflows due to the small set of heavily shared 

cache lines. For example, less than 5 percent of memory 

traffic increases are observed in Choleksy, FFT, and Water. 

DynP suffers a performance penalty when it runs out of 

directory pointers, as it does on benchmark Barnes and 

FMM. On the two benchmarks, the memory traffic caused 

by extraneous directory overflows in DynP increases 

0.9 times and 0.7 times compared with those on a full 

map directory. The competitions on fixed resource, such as 

pointer/link store entries, due to the different sharing 

patterns of various applications make the performance of 

DynP less robust. 

By exploiting caching exclusiveness, Dir16NB yields 

attractive performance (in terms of memory traffic) across a 

spectrum of SPLASH-2 benchmarks. The traffic produced 

by Dir16NB is close to the ideal traffic of the Dir16NB for 

most applications. The extraneous memory traffic caused by 

Dir16NB is due to the NAck and retry messages used to 

maintain the exact sharing information in a centralized 

linked list style. 

Fig. 11 further shows the execution time of the studied 

directory schemes normalized to that of the Dir16NB. The 

performance results are found to be tightly correlated with 

memory traffic patterns shown in Fig. 10. The poor 

performance of the Dir4NB, which stems from the largest 

directory overflows, is shown on most of the studied 

benchmarks. For example, the Barnes and FMM with the 

Dir4NB run 6.4 and 5.8 times slower than those with the 

Dir16NB. By only increasing invalidation traffic but not the 

miss ratio over that of the Dir16NB, Dir4B and Dir2CV2 run 

 and 1.18 times slower than Dir16NB on Barnes. 

On benchmarks LU, Radix, Cholesky, and Water, more 

than 95 percent of the invalidating writes produce only one 

invalidation [44]. In such cases, there are a few invalidating 
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Fig. 11. Normalized execution time. 

 
writes to the blocks which experience directory overflows. 

Thus, Dir4B and Dir2CV2 exhibit approximate performance 

of the Dir16NB. For benchmarks characterized by many 

mostly read and small migratory memory blocks, like FMM 

and Raytrace, the performance degradation of the limited 

directory schemes is not small due to the fact that the 

invalidating writes to the memory blocks of mostly read 

nature result in large invalidations. Not surprisingly, the 

directory overflow-free ADir16NB and Dir16NB are most 

robust and outperform other schemes across a spectrum of 

applications with various memory access patterns. 

As described before, the ADir16NB requires replacement 

hints, NAck, and retry messages to maintain the exact 

memory block sharing information while exploiting caching 

exclusiveness. The introduction of replacement hints, 

NAck, and retry messages, however, could potentially 

increase coherency traffic. To understand this implication, 

we simulate a Dir16NB without the replacement hint, a 

Dir16NB with the replacement hint and ADir16NB. The 

performance results of the above three directory schemes 

normalized to  the traffic  produced  by a Dir16NB without 

replacement hints are shown in Fig. 12. We break traffic 

down into five major categories: 

1. local data, which is the amount of data transmitted 

between processor and local memory, 

2. remote data, which is the traffic transferred between 

nodes, 

3. invalidations and acknowledgments, which are traffic 

associated with cache coherence maintenance, 

4. replacement hints, which are the amount of messages 

used by the bookkeeping of accurate sharing status, 

and 

5. NAck and retry, which are overhead to avoid 

running out of pointers during the transient  state 

in an associative full map directory. 

With the aid of replacement hints in the finite cache run, 

the directory knows about all cache replacements and is 

able to send fewer invalidations for some invalidating 

writes. Such benefit can be found in benchmarks Barnes and 

FMM. For other benchmarks, the use of replacement hints 

contributes to less than 10 percent of memory traffic 

increase. The visible increases are found on benchmarks 

Radix, Cholesky, and FFT, which show higher conflict miss 

rates [50]. In all studied benchmarks, NAck and retry 

messages slightly increase memory traffic. These indicate 

that the impact of replacement hints, NAck, and retry 

messages is not very detrimental on the total traffic. 

 
5 RELATED WORK 

The Stanford DASH [30] and HAL-S1 [49] both implement a 

bit-vector protocol. Many hybrid directory schemes have 

been proposed as design alternatives of a full map directory 

[34]. One example is a pointer cache tagged directory [33] 

that organizes cache pointers as a cache, each entry of which 

is indexed by an address tag. The tag cache directory [39] is 

a variation of the pointer cache idea that uses two levels of 

caches in the directory. In both cases, when the directory 

cache runs out of space, a free entry has to be created by 

randomly choosing an active entry and invalidating the 

selected block in the indicated processor. In [21], Ho et al. 

 
 

 
 

Fig. 12. Impact of replacement hint, NAck, and retry messages on traffic. 
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proposed a scheme called in-memory directories to elim- 

inate the cost of directories by storing directory entries in 

the same memory used for the data that they keep coherent. 

ADirpNB is a hybrid between directory cache and linked 

list directories and introduces a new efficient directory 

configuration between these two. By exploiting cache 

exclusiveness, ADirpNB eliminates the need to store a 

tagged address for each directory entry and avoids 

directory overflows in an elegant manner. 

The coarse vector directory [16] incorporates a versatile 

directory structure which can be dynamically interpreted, 

depending on the data sharing degree of a given memory 

block. Due to the introduction of coarseness in sharing 

information, invalidation messages may have to be sent to 

all processors identified by a unique group, regardless of 

whether they have actually accessed or are caching the 

block. The SGI Origin 2000 [29] implements a bit-vector/ 

coarse vector directory where the coarseness transitions 

immediately from 1 to 8 above 128 processors. 

The LimitLPSS directory, which was implemented in the 

MIT Alewife machine [7], combines both hardware and 

software to implement a directory protocol. Overflow 

pointers are handled by software and the major overhead 

is the cost of the interrupts and software processing. For 

example, on a 16-processor system, the latency of five 

invalidations handled in hardware is 84 cycles, but a 

request requiring six invalidations handled by software 

intervention needs 707 cycles. 

The dynamic pointer allocation scheme [43] is the default 

directory organization for the Stanford FLASH multi- 

processor. It uses a directory header and a static pool of 

data structures, called the pointer/link store, to maintain 

precise sharing information in a linked list style. In FLASH 

implementation, all linked list manipulations are done  in 

hardware by a special purpose protocol processor, MAGIC. 

Our proposed associative full map directory differs from 

this scheme in that: 1) In ADirpNB, a linked list created for 

a memory block is stored in one directory entry to facilitate 

indexing and replacement; 2) in our proposed scheme, the 

number of bits need to be stored for each pointer is log2 p, 

which is smaller than that for a pointer/link store, which can 

potentially point to a random portion of memory; 3) for the 

purpose of good performance, their pointer/link store should 

have a number of entries equal to 8 to 16 times the number 

of cache lines [44]. In ADirpNB, however, the number of 

entries for a directory is only as many as those for a cache. 

The Scalable Coherent Interface (SCI) [22], also known as 

IEEE Standard 1596-1992, is a typical linked list-based 

directory protocol. The basic SCI uses doubly linked lists 

that are distributed across the nodes. Various derivatives of 

the SCI protocol are used in several machines, including the 

Sequent NUMA-Q [35], HP Exemplar [5], and Data General 

Aviion [13]. The key trade-off is storage requirement, 

controller occupancy, number of network transactions, 

and serialization latency. Several SCI extensions [24], [27] 

have been proposed to help parallelized directory opera- 

tions and reduce invalidation latency. The proposed 

ADirpNB is generally simpler than doubly linked list based 

schemes. 

The Scalable Tree Protocol (STP) [38] proposed by 

Nilsson and Stenströ m constructs and maintains the caches 

in the sharing set of a memory block in a tree structure. The 

STP guarantees logarithmic write latency by always 

maintaining an optimal tree structure and exploiting 

parallelism in the algorithms. Unfortunately, this approach 

sacrifices message efficiency and low read latency in order 

to construct and maintain a balanced tree, making it 

unsuitable for an application with a smaller degree of data 

sharing. The SCI tree extensions [24] is another example of 

tree-based protocols. 

Agarwal et al. [1] first evaluated the performance of 

directory schemes (Dir1NB, Dir0B, and Dir4NB) using 

traces generated by the ATUM address tracing tool on a 

four processor VAX 8350 running parallel applications, i.e., 

POPS, THOE, and PERO, on MACH. It is hard to compare 

our results to theirs because of the differences in both 

simulation methodology and benchmarks. 

Chapin et al. [10] studied the memory system perfor- 

mance of IRIX 5.3 on CC-NUMA multiprocessors and 

concluded that OS data accesses do not follow the patterns 

discovered in application reference streams that motivated 

the design of limited directory schemes. However, they did 

not show the impact of different directories on CC-NUMA 

architecture quantitatively as we do. 

More recently, Michael et al. [36] studied the perfor- 
mance of a full map directory cache protocol with 

alternative coherence controller architectures on a 4 × 16 
CC-NUMA system. They found that the occupancy of 
coherence controllers can be a bottleneck for applications 

with high communication requirements (i.e., ocean, radix, 

and FFT). Dual protocol engines improve performance by 

up to 18 percent   (with   HWC   implementation)   and 

30 percent (with PP implementation) relative to the single 

protocol engine. Our proposed scheme has simplified and 

atomic directory operations and can be implemented with 

either an HWC or a PP. 

Dahlgren et al. [12] evaluate the combined performance 

gains of several extensions to a directory-based invalidation 

protocol, namely, adaptive sequential prefetching (P), 

migratory sharing optimization (M), and competitive- 

update (CW) mechanism. They found that the performance 

of a directory protocol augmented by appropriate exten- 

sions (e.g., P+CW, P+M) can eliminate a substantial part of 

the memory access penalty without significantly increasing 

the complexity of either the hardware design or the 

software system. These optimizations can be used in 

ADirpNB because they are orthogonal to our technique. 

Heinrich et al. [17] evaluate the performance of four 

scalable cache coherence protocols, including coarse vector, 

dynamic pointer allocation, SCI, and COMA protocol, using 

SimOS Mipsy and FlashLite simulators. They found that the 

optimal protocol changes for different applications and can 

change with processor count, even within the same applica- 

tion. Wood et al. [51] explored the complexity of implement- 

ing directory protocols by examining their mechanisms 

ranging from directory primitive operations to network 

interfaces. It is found that, with increasing network latencies, 

the performance effect of directory operation overhead 

decreases, which provides the opportunity to sequence 
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directory operations in a processor rather than a dedicated 

directory controller. 

Nanda et al. [37] studied the impact of applying parallel 

mechanisms, such as multiple protocol engines, pipelined 

protocol engines, and split request-response streams, on the 

occupancy of the coherence controllers. Their experimental 

results showed that each mechanism is highly effective at 

reducing controller occupancy by as much as 66 percent 

and improving execution time by as much as 51 percent on 

both commercial and scientific benchmarks. 

 
6 CONCLUSION 

This paper proposes a new coherence scheme called 

associative full map directory (ADirpNB), which behaves 

like a traditional full map directory and gracefully 

decreases the directory memory requirement. The associa- 

tive full map directory is unique and distinguishes itself 

from previous schemes by dynamically examining and 

exploiting caching exclusiveness of multiple memory 

blocks. Directory bits are dynamically allocated and 

reclaimed for a set of caching exclusive memory blocks. 

By implementing replacement hints, the proposed techni- 

que can emulate a traditional full map directory with lower 

memory overhead, fairly simple protocol modification, and 

appropriate hardware addition. Our analysis shows that the 

directory memory efficiency of the proposed scheme is 

promising: On a typical architectural paradigm, ADirpNB 

reduces the memory overhead of a traditional full map 

directory by up to 70-80 percent. For some optimal memory 

and cache configurations, ADirpNB is more memory- 

efficient than even inexpensive limited directories such as 

Dir4NB and Dir8NB. 

We evaluate the performance of the proposed techni- 

que by using a SimOS simulation platform that runs the 

IRIX5.3 OS and SPLASH-2 applications. Our simulation 

results show that, due to the elimination of directory 

overflows, the speed up of ADirpNB can be competitive 

with that of a DirpNB on the studied workloads. Thus, we 

believe that ADirpNB can be employed as a design 

alternative of full map directory for moderately large-scale 

and fine-grain shared memory multiprocessors. 
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