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Abstract 
Large-scale chip multiprocessors (CMPs) must make 

significant architectural trade-offs in order to maintain 

coherence while still satisfying the demands for area, 

energy, and performance. The approach to many-core 

coherence that is the most scalable and energy-efficient is 

represented by sparse directory organisations. They are 

insufficient for tracking all cached blocks due to their 

restricted associativity, which prevents directory entries 

from having a one-to-one relationship with cached blocks. 

Conflicts will induce frequent invalidations of cached 

blocks, greatly endangering system performance, unless 

the directory storage is generously over-provisioned. 

Over-provisioning the directory storage becomes 

unaffordably expensive as chip space and power become 

more and more valuable as the number of cores rises. 

It is possible to safely remove directory entries tracking 

private blocks from Stash Directory without invalidating 

the accompanying cached blocks thanks to its 

revolutionary sparse directory design. By doing this, it 

enhances the functionality of the system and raises the 

effective directory capacity, permitting significantly 

smaller directory designs. As appropriate, the stash di- 

rectory delegated the duty to find buried cached blocks to 

the last level cache in order to ensure accurate coherence 

under the new loosened inclusion property. This did not, 

however, create serious overhead issues. Simulations on a 

16-core CMP model demonstrate that the Stash Directory 

can reduce the amount of space needed to about 1/8 of 

that of a traditional sparse directory without sacrificing 

performance. 

1 Introduction 

As the number of cores grows in chip multiprocessors 

(CMPs), maintaining coherence across private caches be- 

comes increasingly expensive. To meet the scalability chal- 

lenges, today’s coherence protocols employ directories to 

precisely track and control the multiple copies of data that 

may exist in different locations on chip. While the advances 

in semiconductor technology are expected to continue the 

exponential growth in core count, there is a serious concern 

that employing directory coherence (and coherence in gen- 

eral) will quickly become problematic due to high storage 

and energy requirements. Barring the concerns, Martin et 

al. [20] argue that “cache coherence is here to stay” as its 

 

strong legacy and transparent performance are hard to ig- 

nore. Overcoming the scalability limitations of directory 

coherence is therefore becoming essential in designing fu- 

ture many-core CMPs. 

Directory organizations embodied in modern CMPs 

make different trade-offs in meeting the area, energy and 

performance requirements. Duplicate-tag directories [3, 21] 

are simple to implement and incur low area cost; however, 

they require associativity proportional to the core count, 

which makes them extremely energy-inefficient even for 

systems with 4 to 8 cores. “In-Cache” directories take ad- 

vantage of chip architectures with a shared last level cache 

(LLC) and organize the directory information as part of its 

entries [25]. This approach saves storage and energy since 

no extra tags or lookups are necessary. However, each di- 

rectory entry must encode a set of sharers, which grows lin- 

early with the number of cores. Furthermore, the sharer set 

must be kept for every LLC tag, independent of whether 

the associated block is cached or not. While clever sharer 

encoding methods alleviate the former scalability limita- 

tion [12, 26], the redundantly allocated storage makes them 

area-inefficient for future many-core systems. 

Alternatively, sparse directories [12] offer separate 

address-indexed arrays to flexibly cache directory entries, 

decoupled from the LLC design. This preserves the en- 

ergy benefits of low associativity and enables more space 

efficient designs. Their limited size and associativity, how- 

ever, disallows the one-to-one correspondence of directory 

entries to cached blocks, preventing them from being able to 

track all possible cached blocks, and forcing them to invali- 

date cached blocks when conflicts occur. Unless the storage 

of sparse directories is over-provisioned, conflicts could oc- 

cur frequently and severely hurt the system performance. 

Prior research highlights the need for more effective 

use of a sparse directory’s available space as a way to re- 

duce the over-provisioning requirements [10, 11, 23]. For 

example, Cuckoo [11] and SCD [23] directories explore 

multi-hashing to resolve set conflicts and reduce directory- 

induced invalidation. These techniques achieve better space 

utilization and provide theoretical bounds; however, they 

are limited in potential as they are general to any set- 

associative structure and they do not exploit any character- 
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(a) Directory-Induced Invalidations (b) Cache Miss Rate 

 

Figure 1: Directory-Induced Invalidations (a) and their effect on Cache Miss Rate (b) as a Function of the Directory Provisioning Ratio: 

The rate in (a) is the number of invalidation ops to the total number of directory accesses. Miss rate is normalized to a 2× Sparse Directory. 
 

istics germane to the directory behavior. In a more recent 

study, Cuesta et al. [10] increase the effectiveness of the 

directory space by deactivating coherence for private data. 

While this approach is better in exploiting the unique prop- 

erties of the directory, it relies on the TLB miss handler and 

the page table to detect private data, a granularity that is 

too large to grasp the full potential. Lastly, Alisafaee [2] 

presents a directory which discovers and compacts tem- 

porarily private data to save space. Although this approach 

is effective for programs with large, highly shared data foot- 

prints, its usage and complexity are hard to be justified for 

the general case. 

Instead of focusing on reducing directory conflicts, this 

work aims to relax required functionality of sparse direc- 

tories to enforce invalidation on every eviction. The key 

observation is that most of the evictions in directory force 

invalidation of private blocks—a requirement that is not 

only unnecessary from the coherence perspective, but also 

severely harmful to the cache performance.   By tolerat- 

ing a large number of directory evictions without forcing 

invalidation, we can eliminate the need for storage over- 

provisioning while retaining or improving the effectiveness 

of the cache, and in turn, the overall system performance. 

This paper proposes Stash Directory, a novel sparse di- 

rectory design that aggressively avoids any induced inval- 

idations of blocks that appear to be private to processors. 

By doing so, it transparently eliminates performance loss 

due to premature directory-induced invalidations of blocks 

in the private caches, and at the same time reduces pollu- 

tion in the directory caused by subsequent recalls of those 

blocks—effectively improving the use of the available di- 

rectory space. As private blocks are often dominant in par- 

allel and multiprogramming workloads [10], Stash Direc- 

tory is scalable with nearly constant power and area utiliza- 

tion regardless of the core count. 

Since Stash Directory allows cached blocks to be left in- 

tractable, or “hidden” from the the directory, the coherence 

protocol must ensure that no coherence inconsistencies can 

occur. This is achieved by delegating to the LLC the re- 

sponsibility of keeping a “cached” status bit for each block. 

The coherence protocol leverages this information to detect 

whether a miss in the directory refers to a block that is not 

owned exclusively by the LLC, but is in fact cached in some 

private cache. In such case, the protocol falls back to broad- 

casting to find and retrieve the most up-to-date copy. 

Experimental results using parallel workloads running 

on a 16-core CMP show that Stash Directory can use an 

area as small as 1/8 that of a conventional over-provisioned 

sparse directory, with no performance loss or significant ad- 

ditional bandwidth requirements. Compared to a conven- 

tional sparse directory of an equivalent size, Stash Directory 

can improve performance by 16% and cache energy con- 

sumption by 18%. Analytical models show that inconsis- 

tent misses are rare events that are approximately bounded 

by application-specific characteristics and machine param- 

eters. Overall, Stash Directory is shown to scale exception- 

ally well with the core count, offering an attractive solution 

among the leading directory organizations for large-scale 

CMPs. 

In the remainder of this paper, we will first discuss the 

background and the motivation of this work in Section 2, 

and then describe Stash Directory in Section 3. Section 4 

gives the methodology of our evaluation, followed by the 

evaluation results in Section 5. Section 6 will discuss the 

related work to this work. Finally, Section 7 will conclude. 

2 Background and Motivation 

 Directory-Induced Invalidation 
Sparse directories [1, 6–8, 10–12, 22–24, 26, 29] are orga- 

nized as an associative array indexed by block address, and 

each directory tag encodes the set of sharers of the asso- 

ciated block. Sparse directories are energy-efficient; how- 

ever, due to their limited associativity, they are subject to set 

conflicts that result in evictions of set entries. To preserve 

the correctness of the cache coherence, sparse directories 

force invalidation of the cached blocks that correspond to 

the evicted entries. This can pose large performance over- 

heads due to additional cache misses in processors’ private 

caches. 
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Figure 2: Lifetime Behavior of Cache Block and Directory Entry: The life of a private block (left) vs. a shared block (right). 
 

Figure 1a and 1b show, respectively, the rate in which the 

directory forces invalidations back to the private cache hier- 

archy and the corresponding increase in cache miss rate, for 

different sizes of a sparse directory. The different sizes are 

labeled as ratios, which denote the provisioned size of the 

directory. For example, a 1 corresponds to a system with 

as many directory entries as the number of blocks that can 

be cached. The invalidation rate (and in turn the increase 

in miss rate) mainly depends on the relative directory and 

cache size and associativity, and the working set size of a 

given application. The smaller the directory, the more set 

conflicts, and consequently the more directory-induced in- 

validations, will occur. If the working set of the application 

fits in the directory, no conflicts occur and performance is 

ideal. 

Reducing the eviction frequency, and therefore the re- 

sulting extra misses, requires over-provisioning the num- 

ber of directory sets and associativity. As the results show, 

and as previous research and real implementations have 

also suggested [9, 12], set-associative directories need to be 

over-provisioned by more than 2 in order to reduce evic- 

tions, while still providing no guarantees. CMP architec- 

tures that implement a directory as part of the shared LLC, 

i.e., in-cache, can achieve a near ideal case since they nat- 

urally encompassed an over-provisioned design. However, 

such implementations tend to result in an extremely over- 

provisioned case since the number of tags in the LLC could 

greatly exceed the number of tracked blocks in the private 

caches (e.g., 8×  [25]). 

Enlarging the size of the directory negatively impacts the 

directory access latency, area requirements, and energy con- 

sumption. Cuckoo directory [11] and SCD [23] report an 

acceptable provisioning size of 1.5 , yet it is still signif- 

icantly sub-optimal. Given that area and power will be the 

most invaluable on-chip resources, it is important to seek 

for alternative, more scalable directory solutions. 

 Observations and Motivation 

Instead of reducing directory evictions by enlarging the di- 

rectory, this work aims at reducing directory-induced in- 

validations by just not enforcing them in certain (common) 

cases. The key observation is that the directory forces inval- 

idations conservatively rather than selectively, oftentimes 

targeting blocks that are private to processors and by na- 

ture are not subject to coherence inconsistencies. In what 

follows, we describe the lifetime of cache blocks and direc- 

tory entries, and we motivate our approach by showing that 

forcing the invalidation of private blocks is not only unnec- 

essary, but more importantly, particularly detrimental. 

The life of a block begins with a cache miss that loads 

new data into the private level of the cache hierarchy (Fig- 

ure 2). The coherence protocol operates on the assumption 

that all data may become shared at any time; hence, an en- 

try is always allocated at the directory to track the sharing 

status of the block and ensure coherence during its lifetime. 

The life of the block in the cache will end when a set conflict 

in the cache causes its replacement, or when a set conflict 

in the directory forces its invalidation. 

Each block’s life begins as private, where the block re- 

mains exclusive to the processor which initially loaded it. 

The life of the block may remain private during its lifetime 

(Figure 2-left), or may become shared (Figure 2-right). A 

block enters a “shared life” when a different processor ref- 

erences it, and remains shared till the end of its life.1 

During the private life of a block, the corresponding di- 

rectory entry experiences a period of “silence”. This hap- 

pens because all references to the block are issued by its 

exclusive processor and satisfied privately, thus never in- 

voking the coherence protocol.2 

Truly private blocks or those having “long” private life 

will therefore remain silent in the directory till their eviction 

from the directory. However, while the silent entries track- 

ing private blocks will be moving relatively fast towards the 

LRU position of their directory sets and get victimized, the 

actual blocks in the cache might be highly active (hot). As 

a result, many evictions in the directory may force inval- 
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Figure 3: Forced invalidation of private blocks often results in 

misses that reload the same blocks. 
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evicted private blocks. 

 
idations of private blocks that are still hot—hence likely 

to be recalled. Eventually, this could cause a sequence of 

long latency misses by the same processor reloading the 

same block, seriously hurting the overall system perfor- 

mance (Figure 3). 

In addition to the significant impact they will have on 

the average miss latency, those misses will also disturb the 

locality that exists in the directory. In essence, reloading re- 

cently evicted private blocks creates an implicit promotional 

mechanism of silent (i.e., “dead”) directory entries from the 

evicted position to the MRU (Figure 4). Maintaining dead 

entries in such a way is not only unnecessary, but will cause 

pollution in the directory sets, disturb the directory effec- 

tiveness and further hurt the overall performance. 

The aforementioned observations present a highly un- 

desirable case that could otherwise be avoided if private 

blocks were not invalidated by the directory. The poten- 

tial opportunity is shown in Figure 5 which breaks down 

the directory-induced invalidation messages into those tar- 

geting private versus shared cached block, while indicat- 

ing (with “x” mark) the percentage of blocks that will be 

reloaded soon after a directory-induced invalidation. The 

results, which are based on a 1/4 under-provisioned direc- 

tory size and LRU replacement policy, indicate that many 

directory evictions will invalidate private cached blocks 

Figure 5: Breakdown of directory-induced invalidation targets. 

 
(72%), while 80% of them will be requested again, causing 

extra cache misses and consequently degrade performance. 

As the size of the directory shrinks and as long as private 

data persist, the potential for improvement would be of ma- 

jor significance. 

3 Stash Directory 

Stash Directory evicts directory entries that track private 

blocks optimistically without forcing invalidations of corre- 

sponding cache blocks. Allowing the private cache blocks 

to continue enjoying their private life could significantly re- 

duce cache misses and improve the system performance. 

Furthermore, the resulting permanent evictions of the di- 

rectory’s dead entries reduce the pollution in the directory 

and increase the utilization of the directory space. 

 Basic Organization  and  
Operation 

Stash Directory is a sparse directory design that allows con- 

flicting entries tracking private blocks to be evicted without 

forcing invalidation of the actual block in the cache. In or- 

der to recognize whether a directory entry tracks a private or 

a shared block, each entry stores a bit indicating the lifetime 

sharing state of the tracked block. The bit is initially clear, 

indicating that the data block is private. The bit is set when 

the block changes from private to shared—an event that oc- 

curs when a second processor, other than the one that ini- 

tially loaded the block, refers to it (i.e., issues a miss). The 

directory entry can recognize this event since it is always 

aware of the current sharers of the block. In fact, as the 

first processor has the exclusive ownership of the block, the 

directory can easily detect a private-to-shared event by just 

sensing a directory lookup from another processor. Even- 

tually, when the directory entry reaches its eviction point, 

the bit is tested and, if it is clear (i.e., the cached block is 

still private), then no invalidation is enforced. Note that 

the extra bit is required since the existing sharer-vector in 

the directory entry is inadequate for identifying whether the 

block has been private to only one core during its lifetime. 

For example, it is possible for a nominally shared block to 

appear as private at different sharers at different points in 

time. 
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Stash Directory relinquishes cached blocks, leaving 

them “hidden” from the directory itself. Allowing such 

blocks to reside in the cache is safe as far as the blocks 

are guaranteed to be truly private to a specific processor. 

However, guaranteeing a truly private block is not always 

possible at run time. A block may transition from private to 

shared at any time; hence the “transitioning” miss may oc- 

cur while the block is hidden from the directory, a situation 

we call a false miss. On a false miss, the coherence protocol 

sees a regular directory miss and falsely assumes that the 

referenced block is not present in any private cache. There- 

fore, the protocol forwards the miss to the shared LLC, ex- 

pecting that it will be satisfied there. 

Stash Directory delegates to the shared LLC and the co- 

herence protocol the responsibility to detect a false miss 

and avoid inconsistency. The shared LLC keeps a bit for 

each cache block, indicating whether the block is possibly 

“cached” in the lower levels of the hierarchy. This bit is 

set by an explicit eviction notification message sent by the 

directory whenever it evicts entries without invalidating the 

cached copy. Therefore, a miss in the directory followed by 

a hit in the LLC having the “cached” bit set will immedi- 

ately reveal a false miss. On detecting a false miss, the LLC 

controller will refuse to satisfy the miss and instead invoke 

back the coherence protocol to issue a broadcast request for 

discovering the most up-to-date copy of the block. After the 

miss is completed, the coherence protocol will register the 

block in the directory and reset the corresponding cached 

bit in the LLC. 

As discussed, Stash Directory requires a shared LLC, 

which is typical in modern CMPs [9]. The additional stor- 

age required for the extra bits in the LLC is negligibly small 

(<0.2% of the cache size), is independent of the core count 

and scales perfectly with the cache size. Also note that an 

inclusion property is required between hidden blocks and 

the corresponding LLC entries. Fully inclusive LLCs (a de- 

sign choice in most of Intel’s CMP designs so far) inher- 

ently guarantee this property.3 For non-inclusive caches [9], 

it is relatively easy to selectively enforce inclusiveness only 

for the blocks that are hidden. Specifically, (1) a cached 

block that is becoming hidden must be installed to the LLC 

if it is not already there (directory writes the victim’s tag in 

LLC); and (2) a back-invalidation operation is selectively 

enforced only when the LLC block being evicted has the 

cached bit set. Lastly, handling a false miss requires stan- 

dard support at the LLC controller to set/test the cached bit, 

and a standard broadcast read operation by the coherence 

protocol. 

 Handling LLC evictions 

When an LLC block with its “cached” bit set is evicted, 

the cached (hidden) copy of that block must be removed 
 

 

3The inclusion property forces a back-invalidation operation to all the 

sharers of the block being evicted. 

from the private cache hierarchy. Given that LLC entries 

with their cached bit set have no directory information, the 

eviction’s back-invalidation operation will have to be broad- 

cast. This would significantly increase the frequency of 

broadcasting operations—and hence the bandwidth—since 

for every hidden private block, a broadcast operation is on 

the horizon. To avoid such situations, the cache system must 

implement clean eviction notifications (common in current 

commercial processors, e.g., AMD Opteron [9]). Accord- 

ingly, when a block is evicted from a private cache hierar- 

chy, an eviction notification is sent to the directory to update 

the sharers to better reflect the sharing status of the block. 

If a notification does not find a corresponding entry in the 

directory, then it is implied that the block being evicted is 

a hidden private block and is currently tracked by the LLC. 

Therefore, the eviction notification will be forwarded to the 

LLC, and it will clear the cached status bit as there would 

be no longer a cached copy. 

Clean eviction notifications are likely to clear the cached 

status of LLC blocks before they get evicted, hence reduc- 

ing unnecessary broadcasts. In addition, we can further de- 

lay the cached LLC blocks from being evicted by allowing 

LLC sets to replace first those entries for which eviction no- 

tifications have been received. Further techniques to elim- 

inate the negative effects of inclusiveness can be found in 

prior research [16]. 

 Handling Shared Data 

Stash Directory handles the evictions of entries tracking 

shared data blocks as a conventional sparse directory—it 

enforces invalidation on all cached copies. Although this 

may cause the invalidation of a block in more than one cores 

at once, it is preferred because, in contrast to private blocks, 

hiding shared blocks (especially migratory) could signifi- 

cantly increase the frequency of false misses as those blocks 

do not remain silent but are frequently referenced by differ- 

ent processors. In addition, since directory is sensitive to 

the temporal locality of blocks that are actively shared (re- 

call Figure 2), victimized shared entries (LRU) are likely to 

track shared blocks which are either dead, or temporarily 

private, hence benefit from eviction. In the latter case, the 

eviction will give the the opportunity to a shared block to be 

reloaded as private (without a false miss) and benefit from 

re-entering the Stash Directory if it is to remain private. 

Although recent sparse directory implementations such as 

AMD HT Assist [9] suggest to explicitly avoid evicting 

shared entries, Stash Directory naturally avoids such evic- 

tions as it exploits the temporal behavior of actively shared 

blocks while reducing the pollution of directory sets from 

truly private entries. 

 Analysis on False Misses 

Probability of a false miss. As described in Section 2, the 

transition of a block from private to shared may happen at 
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Figure 6: The distribution of memory blocks based on their Pri- 

vate Lifetime (load-to-shared distance). Distance is measured in 

where D and C is the directory and the cache size (in num- 

ber of sets), respectively. α is a factor introduced to correct 

the mismatch between the distance as measured at the direc- 

tory and the one that is seen at the processor’s side. There 

are two reasons that create this mismatch: First, the direc- 

tory absorbs memory references from all processors, hence 

a distance in the directory may appear larger relative to what 

a processor experiences. Second, only memory references 

that will invoke the coherence protocol or miss in the pro- 

cessor’s cache will reach the directory, and therefore many 

will be filtered out. If we assume that all processors ref- 

erence memory blocks at the same rate and that Ps is the 

probability of a reference reaching the directory, then a rea- 

sonable approximation for α would be: 

memory references issued by the thread which loads the block. 
1 1

 
The distribution is largely an application attribute, but also de- 

pends on the relative progress of threads. 

α ≈ 
core count 

×  
P 

(4) 

 
any time. A false miss occurs only when this transition takes 

place after the block is relinquished from the directory and 

before it is evicted from the cache, i.e., while the block is 

hidden. Theoretically, the longer the block’s entry lives in 

the directory, the more likely that we can track the transi- 

tion, and thus the lower probability of a false miss. 

Figure 6 illustrates the distribution of memory blocks 

based on their private lifetime for a given application. Ex- 

amining the distribution of blocks’ private lifetime is useful 

because when compared with directory and cache eviction 

times, it can provide insights about the probability of reach- 

ing false misses. For example, if the point Ec represents the 

average eviction time of a cache block, and Ed the average 

eviction time of a directory entry, then the fraction of transi- 

tions appearing between the two points is the average num- 

ber of memory references that would fall into a false miss. 

Hence, the average false miss probability is expressed as: 

P (false miss) = Pt(Ed < t < Ec) (1) 

where Pt a probability distribution as the one depicted in 

Figure 6. We approximate Ec and Ed as follows. 

Let private-to-shared reuse distance be the distance be- 

tween two references on the same block, with the second 

being the one that transitions the block into shared. Then, 

we can derive the probability distribution of this distance as 

one appears in a cache (pt), and as one appears in the direc- 

tory (qt). These distributions are basically the same as Pt 

(Figure 6), except that pt may deviate (density shifted more 

toward the left), depending on whether and how the blocks 

are privately reused before they transition to shared. Then, 

assuming a fully-associative cache and directory [14], 

The final expression for the false miss probability is 

P (false miss) = qt(t > αD) + pt(t < C) −  1 (5) 

which is derived from Equations (1), (2), and (3), and is dic- 

tated by the application- and machine- specific properties of 

qt, pt, and Ps, the cache and directory parameters, and the 

core count.4 

Upper bound for false misses. The worst case with re- 

gard to false misses occurs if all private-to-shared refer- 

ences miss in the directory and hit in a cache.   In such 

case, the total actual number of false misses will be equal to 

the total number of private-to-shared references. The tran- 

sition from private to shared can occur at least once for each 

shared block, but it may also occur more times as the same 

block may be evicted and reloaded again. A reloaded block 

always appears as private and thus creates a possibility for a 

new private-to-shared transition. Thus, the upper bound can 

be expressed as 

# false misses < # shared blocks ×  S (6) 

where S is the average number of times a shared block will 

go through a private-to-shared transition, which we could 

approximate by calculating the probability of a shared block 

falling into a reuse distance larger than Ec and Ed. 

For shared data sets that are relatively small and fre- 

quently accessed (i.e., have short reuse distance), the S fac- 

tor could be very small and the bound closer to the actual 

number of application’s shared blocks. In such cases, the 

worst case for false misses is largely an application-specific 

attribute that can be easily evaluated before any architec- 

tural exploration. A comparison between this worst-case 

bound and experimental measurement of false misses is pre- 
sented later in Section 5.1. 

Pt(t > Ed) = qt(t > αD) (2)    

Pt(t < Ec) = pt(t < C) (3) 
4For set-associative caches, the expression can be approximated based 

on the same probability distributions [4, 14]. 
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Table 1: Machine Architecture Configuration. 

 
BENCHMARK INPUT BENCHMARK INPUT 

barnes 16K (particles) bodytrack simsmall 

cholesky tk25.O canneal- simsmall 

fft 256K (points) ferret simsmall 

fmm 16K (particles) fluidanimate simsmall 

lu 512 (matrix) streamcluster simsmall 

ocean 258 (grid) vips simsmall 

radix 8M (keys) x264 simsmall 

water-ns 512 (mol.)   

Table 2: Workloads and Input Data Sets. 

In summary, the analysis suggests that the rate of 

false misses can be approximated before performing time- 

consuming evaluations, and can provide valuable hints to- 

wards workload characterization and design exploration. 

4 Evaluation Methodology 

 System Model 

We simulate a 16-core tiled CMP system using x86-64 

memory traces collected with PIN [19]. The traces are 

fed into a detailed cycle-accurate cache and interconnect 

model. Each tile has an in-order single-threaded core with 

private L1/L2 cache, a shared L3 bank, and a directory 

slice. The tiles are interconnected through a 4 4 2D mesh 

network-on-chip (NoC). All private caches are kept co- 

herent by a MESI coherence protocol and a distributed, 

address-interleaved directory. Table 1 summarizes the main 

architecture configuration parameters. 

 Workloads 

We study multithreaded workloads from the splash2 and 

parsec suites [5, 27] with input sizes as listed in Table 2. 

Detailed simulations are performed during both parallel and 

sequential phases of the workloads and statistics are col- 

lected at the end of a parallel phase. We use all available 

processor cores by spawning 16 concurrent threads in all 

experiments. For stable and repeatable measurements, we 

prevent thread migration by binding each thread to the first 

touched core. For workloads that create more threads than 

CPUs we enforce deterministic scheduling. 

 Evaluated Schemes 
We evaluate Stash Directory (or “Stash” for short) rela- 

tive to a conventional sparse directory implementation [12] 

(“Sparse” for short). We also compare against the state- 

of-the-art approach to reducing the number of required 

directory entries, which deactivates coherence for private 

blocks [10]. We refer to the latter scheme as PDC (stand- 

ing for Private Deactivation Coherence). More schemes are 

qualitatively compared in Section 5. All the evaluated de- 

signs share the same basic structure—a set-associative ar- 

ray with each entry holding a cache tag and a sharer vec- 

tor. The number of tags (entries) in the directory defines the 

maximum number of addresses that can be represented in 

the directory. This number, essentially the storage capacity 

of the directory, is reported in relation to the total lines in 

the tracked caches; i.e., 1 when it is equally-provisioned, 

1.5 , 2 , etc. when over-provisioned, and 1/2 1/4 etc. 

when under-provisioned. 

All designs use a full sharer vector per entry to record 

the sharing information. Note that the sharer set can be 

encoded in various ways, and there is rich literature on 

tackling the scalability limitations of a full-map sharer vec- 

tor [1, 6–8, 12]. It is important to remember that the sharer 

information encoding is independent of how the evaluated 

schemes are organized. Directory access latency and power 

are modeled after the same technology assumed for the pri- 

vate L2 caches. 

Stash Directory is augmented with an extra bit per en- 

try denoting whether the block being tracked is private or 

shared, and the LLC with an extra bit per entry (“cached” 

bit). References or replacements in the LLC will trigger a 

broadcast operation if the cached bit is set. Eviction notifi- 

cations that reach the LLC will clear the cached bit. 

For the PDC scheme we employ mechanisms that clas- 

sify memory pages into private or shared, and we deactivate 

the coherence protocol for those memory requests sorted 

as private. The classification and detection mechanism re- 

quires modifications to the TLB miss handler and the page 

table, which we implement as described in [10]. 

5 Evaluation Results 

 Impact of Directory Size on Cache 
Performance 

By eliminating many directory-induced invalidations, Stash 

prevents the increase in cache misses and improves cache 

performance. Figure 7 shows the increase in cache miss rate 

when employing a conventional sparse directory in contrast 

to Stash. The first four bars in each workload correspond 

to Sparse, starting with a 2 provisioning size till down to 

1/4 . The last bar shows the result of Stash, when it is 

under-provisioned to 1/4 . As the results illustrate, in al- 

most all cases Sparse severely hurts the cache performance 

if not over-provisioned. In contrast, Stash is able to signif- 

icantly alleviate that impact, or in many cases completely 

elide it. For almost all applications, a 1/4 provisioned 

Stash can perform as well as a 2 provisioned Sparse. Con- 

sequently, Stash can reduce the space requirements by eight 

Model Configuration Values 

Cores 16 in-order cores, tiled, 2-issue width. 

L1 Cache 32 KB D + 32KB I, 4-way, 1-cycle tag latency 

L2 Cache 256 KB private, 8-way , 3-cycle tag latency 

L3 Cache 16MB shared (NUCA), 16-way, 5/30-cycle tag/data 

Coherence MESI protocol, clean eviction notification. 

Directory 2x-1/8x provisioned, 8-way, LRU. 

NoC 4× 4 2D mesh, 2-stage routers, wormhole-switched, 
determ. X-Y routing, Ack/Nack flow control. 

Main mem. 70-cycle latency, 4KB pages, 64-entry 4-way TLB 
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Figure 7: Cache Miss Rates for different Sparse and Stash Directories. Results are normalized to a 2     Sparse Directory. Cache misses 

count the accesses that miss in both L1 and L2. 
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Figure 8: Examples of the Cache Miss Rate Sensitivity to the Directory Provisioning Size. 
 

times (i.e., to 1/8 of the original size) with essentially no 

impact on cache performance. In contrast, a Sparse direc- 

tory with such a small size would have increased the miss 

rate significantly (e.g., by more than 40% for radix). In 

some cases Stash can perform better than 2 Sparse (e.g., 

bodytrack, fft), indicating that even with 2 size, a Sparse 

can have a negative impact on performance. 

Following how the miss rate changes as the capacity of 

the directory varies can offer further insight on how the 

Stash scheme performs. In the case of the conventional 

Sparse, decreasing the directory will always create more 

conflicts, and since every conflict enforces invalidation, the 

miss rate will always suffer more. In the case of Stash, how- 

ever, the cache performance won’t be affected unless the di- 

rectory starts evicting entries that track shared blocks. This 

situation will possibly occur when the directory size be- 

comes smaller than that of the working shared data set size 

that is usually much smaller than that of the overall work- 

ing set. The first example in Figure 8 (ocean) illustrates a 

case in which cache performance remains unaffected even 

with heavily under-provisioned Stash capacity. In this ex- 

ample, Stash can be as small as 1/16 without impacting 

cache performance. We found that such a significant under- 

provisioning opportunity exist in 5 out of the 15 studied 

workloads (fft, ocean, radix, vips, x264). By decreasing 

further the directory capacity, the miss rate will eventually 

become sensitive—a point which could be associated with 

the shared data’s working set size of the application. Typ- 

ically, most applications will naturally demonstrate some 

level of sensitivity as shared entries in directory will conflict 

with newly loaded shared or private entries. Stash alleviates 

the impact compared to Sparse as illustrated by the fluidan- 

imate’s example in Figure 8. In this case, Stash Directory 

degrades the cache performance in a slower rate compared 

to Sparse. Note that in this example a Stash with 1/8 
capacity is able to keep the miss rate lower than the large, 

2 Sparse directory. Lastly, applications with poor shared 

data locality or stream-like references to private data may 

prevent Stash from being effective. Applicatons with rela- 

tively hight miss rate, such as canneal and streamcluster are 

not much sensitive to the changing directory capacity (e.g., 

Figure 8). 

False misses. False misses trigger broadcast operations, 

which are more demanding in terms of bandwidth. If false 

misses occur frequently, then they could threaten the over- 

all energy and performance of a system. Our analysis in 

Section 3.4 shows that the probability of a false miss and 

an upper bound can be easily approximated and could be 

fairly small. Figure 9 shows experimental results for the 

amount of false misses, for all the applications in our study 

and for different directory sizes. Also, for each applica- 

tion, we draw the upper bound given by Equation (6) as- 
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Figure 9: False misses relative to the total misses for different 

stash directory sizes. The dots show a theoretic upper bound ap- 

proximation. 

 
suming S = 1.01 (shown with a dot above the bar—only 

for the 1/4 case). The results show that the number of 

false misses is around 6% on average for the 1/4   case, 

and they range from 0% to 25% in the worst case. As ex- 

pected, false misses are relatively sensitive to the directory 

size. As we will show in the rest of this section, these false 

misses do not raise significant concerns and do not adverse 

the improvements that Stash offers in overall. 

 Performance Comparisons 

In Figure 10 we compare bandwidth demands, execution 

time and energy consumption of 1/4 Sparse, PDC and 

Stash directories. All the results are normalized to a 2 
base sparse directory. 

Bandwidth requirements. Figure 10a shows the NoC traf- 

fic generated with each scheme, measured as the total num- 

ber of bytes transmitted during execution. In Stash, we 

break down the additional traffic generated from broadcasts 

into broadcast traffic due to false misses, and due to LLC 

evictions of hidden blocks (marginal difference). Despite 

the added broadcast traffic, Stash has bandwidth require- 

ments similar to the 2 Sparse, while when compared to 

equal-size Sparse (1/4 Sparse), it reduces the overall NoC 

traffic by 50% on average. The improvements come mainly 

from the reduction in requests for data (i.e., misses), as well 

as the reduction in directory-induced invalidation and their 

associated writebacks. 

Compared to PDC, Stash achieves slighly less bandwidth 

savings on average; This is due to the large amount of co- 

herence msgs saved when the data classification mechanism 

is in a good effect for PDC. In cases such as water-ns, how- 

ever, Stash can be significantly more bandwidth-efficient, 

achieving improvements of up to 35% over PDC. The re- 

sults show also that broadcasting in Stash adds a 0% to 10% 

of extra traffic. Broadcasting can be completely eliminated 

if we replace the cached bit at LLC with the actual ID of 

the core holding the block. This will cause however more 

redundant storage in LLC and therefore is a design choice 

that should be further evaluated. 

Overall performance. Figure 10b shows execution time 

achieved by the studied schemes. On average, 1/4 Stash 

can improve performance by 16% compared to Sparse, and 

by 2% compared to PDC. In contrast to Sparse, Stash tol- 

erates well the under-provisioned directory size (1/4 ) and 

performs equal to the 2 Sparse directory. This suggests 

that Stash can reduce space requirements to as low as 1/8 
that of a conventional directory without compromising per- 

formance. Considering the strong correlation of perfor- 

mance to the cache miss rate, we expect that Stash can often 

sustain performance even for smaller directory sizes (e.g., 

ocean in Figure 8), 

The quantitative comparison between PDC and Stash 

does not lead to a clear winner on average; however it high- 

lights the importance of Stash versus PDC in design deci- 

sion making. Stash is a fundamentally different approach 

as it addresses the problem of handling private data in an 

aggressive rather than conservative manner; Stash Direc- 

tory evicts silently all entries that appear to be optimistically 

private, eliminating all directory-induced invalidations on 

private blocks, and relying in a simple mechanism to dis- 

cover false cases. In contrast, PDC explicitly aims at saving 

space by preventing private blocks from entering the direc- 

tory; however, it can do so only for some fraction of them as 

its detection mechanism is conservative and cannot tolerate 

incorrect speculations. Essentially, Stash is expected to be 

highly effective in applications where memory pages have 

mixed private and shared data, as well as good temporal lo- 

cality, because it will gradually remove all private blocks 

from the directory. However, in memory-bound applica- 

tions (e.g., canneal), Stash performs less effectively, reach- 

ing equal to or worse than PDC performance levels. 

Furthermore, Stash is a simpler design approach in that 

it is implemented at the last level of the cache hierarchy, and 

is decoupled from in-core structures such as TLBs—which 

are already quite complex and heavily accessed.   Stash is 

in turn a transparent and effective optimization that works 

independently of the type of cores that are plugged in, and 

of the type of system software that is running. In a further 

perspective, Stash and PDC are orthogonal techniques, and 

therefore can be combined to provide the best of both or 

even additional improvements. 

Energy efficiency. Reduction of bandwidth demands and 

execution time directly translates to energy savings. To as- 

sess the energy consumption, we use an intuitive model that 

considers the dynamic energy consumed in the directory, 

the interconnect, and the L2/L3 cache lookups, including 

coherence requests. The energy consumed per directory 

and cache access is estimated using CACTI [15] assuming 

a 32nm technology. For interconnect, we assume that the 

energy consumption is proportional to the amount of data 

transferred and that lookups on network routers consume 

four times more power than link traversals. . Note that we 
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Figure 10: Comparison of 1/4×  under-provisioned directory organizations. Results are normalized to 2×  Sparse. 
 

do not account static energy or energy consumed in other 

components. Figure 10c presents the results for the differ- 

ent schemes. Stash Directory achieves partial reductions in 

energy dissipation in the cache hierarchy by 18% compared 

to Sparse, and compares equally to the PDC approach. 

 Scalability 

A feasible directory design for coherent many-core CMPs 

must scale well across an increasing number of cores. Area 

and energy requirements must be kept minimum, as they 

will present scarce resources in many-core chips, while per- 

formance should be sustainably unaffected by the existence 

of the directory. Stash inherits the power efficiency of 

sparse directories, as well as the numerous scalable sharer 

encoding techniques. Therefore, what remains essential to 

examine is whether the benefits of the Stash design extend 

as the core count increases, continuing to offer storage im- 

provements without affecting the performance or energy of 

the system. 

Figure 11 presents performance and bandwidth scaling 

trends for the three different organizations. To scale out the 

evaluation to many cores, we spawn up to as many threads 

as possible on a native machine, trace the memory refer- 

ences of each thread and the instructions between them, 

and feed the trace to a cache simulator. The results show 

that Stash Directory scales well on average. Cache perfor- 

mance gets better as the core count increases mainly be- 

cause of the relation of Stash with the size and locality of 

shared data sets—which are basically independent of the 

core count. Despite the broadcasting operations (that are in- 

herently non-scalable), Stash bandwidth remains relatively 

insensitive, suggesting that the amount of broadcasts is not 

significant enough to impact bandwidth and energy nega- 

tively. PDC follows Stash closely, but for high core count 

its overall performance is less robust. This is due to a de- 

graded effectiveness in classifying the private blocks. In 

the case of the base directory, the core growth will directly 

increase the directory-induced invalidations, which will in 

turn degrade the performance severely. 
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Figure 11: Many-core Scalability: Proxies for performance (left) and energy (right). The measurements assume that the total cache size 

increases in proportion to the core count and the directory size remains 1/4× the cache size. 
 

6 Related Work 

There is a large body of work addressing the scalability 

challenges of cache coherence directory. This section dis- 

cusses the most related prior work, focusing on studies 

looking into the storage inefficiencies in the set-associative 

directory structure. 

Duplicate-tag and tag-less organizations. Duplicate-tag 

directories, used in Piranha [3] and Niagara 2 [21], can keep 

one-to-one correspondence to cache blocks, and do not re- 

quire keeping extra sharing information. Their storage re- 

quirements are equal to the aggregated L1 tags. However, 

their associativity must be equal to the cache associativity 

core count, which adds significant overheads per lookup 

and makes this organization far from scalable. “Tagless di- 

rectory” [28] uses instead a set of Bloom filters to test for 

tag membership and does not rely on fully duplicated tags. 

This makes it even more storage efficient than duplicate- 

tags (especially for small core counts) and also improves 

energy dissipation; however, similar to the duplicate-tag di- 

rectory, it has a quadratic growth in chip energy dissipation 

for the aggregate of all tag-less directory slices and fails to 

scale beyond 128 cores. 

Sparse directories. Sparse directories [12] are more energy 

efficient than the duplicate-tag directory since they have a 

relatively low associativity. However, their storage must be 

over-provisioned to reduce conflicts in directory entries as 

they may negatively affect performance. Hence, their de- 

sign usually incurs significant area overheads. Apart from 

that, Sparse directories must keep full sharer vectors for 

each cached block, which adds storage overheads that do 

not scale with core count. This limitation has been ad- 

dressed by numerous prior works [1, 6–8, 12, 17, 18, 26, 28, 

29] and is not in the scope of this work. 

To reduce the over-provisioning requirements, recent 

proposals such as Cuckoo [11] and SCD [23] directories 

resolve set conflicts using multi-hashing indexing and in- 

sertion. Although these techniques increase the space ef- 

ficiency, they do not take into account any characteristics 

unique to the coherence directory behavior and hence are 

limited in their potential. Furthermore, the aforementioned 

techniques require progressive replacement/insertion oper- 

ations, and thus they affect the average latency of the direc- 

tory lookup. The relaxed inclusion property of Stash Di- 

rectory is orthogonal to the set conflict resolving techniques 

used by Cuckoo or SCD, and thus can be combined. 

An alternative approach for increasing the effectiveness 

of the directory space is to deactivate the coherence for 

private memory blocks [10]. We compare this approach 

against Stash in the previous sections, referred as PDC. In 

summary, PDC depends on a page-granularity data classi- 

fication mechanism [13] that limits its potential. Also, it 

relies on page table modifications, which could be hard to 

justify for relatively minor microarchitecture performance 

improvements. Stash is instead a fairly simple and transpar- 

ent scheme that can be easily adopted in certain designs. 

Lastly, Alisafaee [2] recently proposed a scheme called 

“spatiotemporal coherence tracking” (SCT) that saves di- 

rectory space by tracking temporarily private data in a 

coarse-grain fashion. Temporarily private data are shared 

data that appear private for long periods, i.e., data accessed 

and cached by a single core most of the time. The au- 

thor evaluates SCT against workloads that are dominated by 

shared data footprints and shows that SCT can greatly ben- 

efit from the proposed compaction technique. Specifically, 

SCT reports 1/2×  effective provisioning. 

In comparison, Stash does not directly optimize for 

shared data and thus applications with dominant shared sets 

may not benefit as much as with SCT. However, Stash can 

exploit effectively the (even limited) private data of such 

applications, while PDC is less likely to be effective is such 

a case. Also, Stash will sometimes treat temporarily pri- 

vate blocks as truly private and benefit from them as SCT 

would. For example, a block that has a long private life 

before transitioning to share will be silently removed from 

the directory and remain hidden till the time the transition. 

While SCT compacts entries in order to save space and re- 

quires fairly complicated mechanisms and policies to man- 

age the compacted regions, Stash simply removes entries 
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out of the directory without further storage considerations. 

For workloads with more private data, Stash is expected to 

be substantially more storage- and cost-efficient than SCT. 

The two approaches may be combined synergistically to of- 

fer a robust solution across many application domains. 

7 Conclusions 
This work proposed and evaluated Stash Directory, a novel 

sparse directory design that requires significantly smaller 

storage than conventional directories. Stash Directory al- 

lows directory entries tracking private blocks to be evicted 

without invalidating the corresponding cached blocks. As a 

result, it eliminates performance loss due to premature data 

block invalidations in private caches, and at the same time 

reduces the pollution in the directory sets that are caused by 

subsequent recalls of the same blocks. When private mem- 

ory blocks are dominant in caches, which is often the case 

with parallel and multiprogramming workloads, Stash Di- 

rectory offers an effective, scalable and transparent solution 

that has nearly constant power and area utilization regard- 

less of the core count. 

References 

[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An 

evaluation of directory schemes for cache coherence. In 

Proc. of the Annual Int’l Symp. on Computer Architecture, 

ISCA, 1988. 

[2] M. Alisafaee. Spatiotemporal coherence tracking. In Proc. 

of the Annual Int’l Symp on Microarchitecture, 2012. 

[3] L.   A.   Barroso,    K.   Gharachorloo,    R.   McNamara, 

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, 

and B. Verghese. Piranha: a scalable architecture based on 

single-chip multiprocessing. In Proc. of the Annual Int’l 

Symp. on Computer Architecture, ISCA, 2000. 

[4] K. Beyls and E. H. D. Hollander. Reuse distance as a metric 

for cache behavior. In Proc. of the IASTED Conf. on Parallel 

and Distributed Computing and Systems, 2001. 

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC 

benchmark suite: characterization and architectural implica- 

tions. PACT, 2008. 

[6] D. Chaiken, J. Kubiatowicz, and A. Agarwal. Limitless di- 

rectories: A scalable cache coherence scheme. In Proc. of 

the Int’l Conf. on Architectural Support for Programming 

Languages and Operating Systems, ASPLOS, 1991. 

[7] G. Chen. Slid - a cost-effektive and scalable limited- 

directory scheme for cache coherence. In Proc. of the Int’l 

PARLE Conf. on Parallel Architectures and Languages Eu- 

rope, PARLE, 1993. 

[8] J. H. Choi and K. H. Park. Segment directory enhancing 

the limited directory cache coherence schemes. In Proc. of 

the Int’l Symp. on Parallel Processing and Parallel and Dis- 

tributed Processing, IPPS/SPDP, 1999. 

[9] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, 

and B. Hughes.   Cache hierarchy and memory subsystem 

of the amd opteron processor. IEEE Micro, 2010. 

[10] B. A. Cuesta,  A. Ros,  M. E. Gómez,  A. Robles,  and J. F. 
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