
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 809 Copyright @ 2021 Authors

A Scalable Directory for Many-Core Coherence is the Stash Directory

Ms SMRUTI MISHRA*, Dr K VENKATARAMANA

Dept. OF Computer Science and Engineering, NIT , BBSR

smrutimishra@thenalanda.com*, k.venkata@thenalanda.com

Abstract
Large-scale chip multiprocessors (CMPs) must make

significant architectural trade-offs in order to maintain

coherence while still satisfying the demands for area,

energy, and performance. The approach to many-core

coherence that is the most scalable and energy-efficient is

represented by sparse directory organisations. They are

insufficient for tracking all cached blocks due to their

restricted associativity, which prevents directory entries

from having a one-to-one relationship with cached blocks.

Conflicts will induce frequent invalidations of cached

blocks, greatly endangering system performance, unless

the directory storage is generously over-provisioned.

Over-provisioning the directory storage becomes

unaffordably expensive as chip space and power become

more and more valuable as the number of cores rises.

It is possible to safely remove directory entries tracking

private blocks from Stash Directory without invalidating

the accompanying cached blocks thanks to its

revolutionary sparse directory design. By doing this, it

enhances the functionality of the system and raises the

effective directory capacity, permitting significantly

smaller directory designs. As appropriate, the stash di-

rectory delegated the duty to find buried cached blocks to

the last level cache in order to ensure accurate coherence

under the new loosened inclusion property. This did not,

however, create serious overhead issues. Simulations on a

16-core CMP model demonstrate that the Stash Directory

can reduce the amount of space needed to about 1/8 of

that of a traditional sparse directory without sacrificing

performance.

1 Introduction

As the number of cores grows in chip multiprocessors

(CMPs), maintaining coherence across private caches be-

comes increasingly expensive. To meet the scalability chal-

lenges, today’s coherence protocols employ directories to

precisely track and control the multiple copies of data that

may exist in different locations on chip. While the advances

in semiconductor technology are expected to continue the

exponential growth in core count, there is a serious concern

that employing directory coherence (and coherence in gen-

eral) will quickly become problematic due to high storage

and energy requirements. Barring the concerns, Martin et

al. [20] argue that “cache coherence is here to stay” as its

strong legacy and transparent performance are hard to ig-

nore. Overcoming the scalability limitations of directory

coherence is therefore becoming essential in designing fu-

ture many-core CMPs.

Directory organizations embodied in modern CMPs

make different trade-offs in meeting the area, energy and

performance requirements. Duplicate-tag directories [3, 21]

are simple to implement and incur low area cost; however,

they require associativity proportional to the core count,

which makes them extremely energy-inefficient even for

systems with 4 to 8 cores. “In-Cache” directories take ad-

vantage of chip architectures with a shared last level cache

(LLC) and organize the directory information as part of its

entries [25]. This approach saves storage and energy since

no extra tags or lookups are necessary. However, each di-

rectory entry must encode a set of sharers, which grows lin-

early with the number of cores. Furthermore, the sharer set

must be kept for every LLC tag, independent of whether

the associated block is cached or not. While clever sharer

encoding methods alleviate the former scalability limita-

tion [12, 26], the redundantly allocated storage makes them

area-inefficient for future many-core systems.

Alternatively, sparse directories [12] offer separate

address-indexed arrays to flexibly cache directory entries,

decoupled from the LLC design. This preserves the en-

ergy benefits of low associativity and enables more space

efficient designs. Their limited size and associativity, how-

ever, disallows the one-to-one correspondence of directory

entries to cached blocks, preventing them from being able to

track all possible cached blocks, and forcing them to invali-

date cached blocks when conflicts occur. Unless the storage

of sparse directories is over-provisioned, conflicts could oc-

cur frequently and severely hurt the system performance.

Prior research highlights the need for more effective

use of a sparse directory’s available space as a way to re-

duce the over-provisioning requirements [10, 11, 23]. For

example, Cuckoo [11] and SCD [23] directories explore

multi-hashing to resolve set conflicts and reduce directory-

induced invalidation. These techniques achieve better space

utilization and provide theoretical bounds; however, they

are limited in potential as they are general to any set-

associative structure and they do not exploit any character-

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 810 Copyright @ 2021 Authors

C
a

c
h

e
 M

is
s
 R

a
te

 (
N

o
rm

a
liz

e
d

)

1.0

2x 1x 1/2x 1/4x 1/8x 1/16x 2x 1x

6

1/2x 1/4x 1/8x 1/16x

0.8

5

4

0.6

3

0.4

2

0.2 1

0.0 0

(a) Directory-Induced Invalidations (b) Cache Miss Rate

Figure 1: Directory-Induced Invalidations (a) and their effect on Cache Miss Rate (b) as a Function of the Directory Provisioning Ratio:

The rate in (a) is the number of invalidation ops to the total number of directory accesses. Miss rate is normalized to a 2× Sparse Directory.

istics germane to the directory behavior. In a more recent

study, Cuesta et al. [10] increase the effectiveness of the

directory space by deactivating coherence for private data.

While this approach is better in exploiting the unique prop-

erties of the directory, it relies on the TLB miss handler and

the page table to detect private data, a granularity that is

too large to grasp the full potential. Lastly, Alisafaee [2]

presents a directory which discovers and compacts tem-

porarily private data to save space. Although this approach

is effective for programs with large, highly shared data foot-

prints, its usage and complexity are hard to be justified for

the general case.

Instead of focusing on reducing directory conflicts, this

work aims to relax required functionality of sparse direc-

tories to enforce invalidation on every eviction. The key

observation is that most of the evictions in directory force

invalidation of private blocks—a requirement that is not

only unnecessary from the coherence perspective, but also

severely harmful to the cache performance. By tolerat-

ing a large number of directory evictions without forcing

invalidation, we can eliminate the need for storage over-

provisioning while retaining or improving the effectiveness

of the cache, and in turn, the overall system performance.

This paper proposes Stash Directory, a novel sparse di-

rectory design that aggressively avoids any induced inval-

idations of blocks that appear to be private to processors.

By doing so, it transparently eliminates performance loss

due to premature directory-induced invalidations of blocks

in the private caches, and at the same time reduces pollu-

tion in the directory caused by subsequent recalls of those

blocks—effectively improving the use of the available di-

rectory space. As private blocks are often dominant in par-

allel and multiprogramming workloads [10], Stash Direc-

tory is scalable with nearly constant power and area utiliza-

tion regardless of the core count.

Since Stash Directory allows cached blocks to be left in-

tractable, or “hidden” from the the directory, the coherence

protocol must ensure that no coherence inconsistencies can

occur. This is achieved by delegating to the LLC the re-

sponsibility of keeping a “cached” status bit for each block.

The coherence protocol leverages this information to detect

whether a miss in the directory refers to a block that is not

owned exclusively by the LLC, but is in fact cached in some

private cache. In such case, the protocol falls back to broad-

casting to find and retrieve the most up-to-date copy.

Experimental results using parallel workloads running

on a 16-core CMP show that Stash Directory can use an

area as small as 1/8 that of a conventional over-provisioned

sparse directory, with no performance loss or significant ad-

ditional bandwidth requirements. Compared to a conven-

tional sparse directory of an equivalent size, Stash Directory

can improve performance by 16% and cache energy con-

sumption by 18%. Analytical models show that inconsis-

tent misses are rare events that are approximately bounded

by application-specific characteristics and machine param-

eters. Overall, Stash Directory is shown to scale exception-

ally well with the core count, offering an attractive solution

among the leading directory organizations for large-scale

CMPs.

In the remainder of this paper, we will first discuss the

background and the motivation of this work in Section 2,

and then describe Stash Directory in Section 3. Section 4

gives the methodology of our evaluation, followed by the

evaluation results in Section 5. Section 6 will discuss the

related work to this work. Finally, Section 7 will conclude.

2 Background and Motivation

 Directory-Induced Invalidation
Sparse directories [1, 6–8, 10–12, 22–24, 26, 29] are orga-

nized as an associative array indexed by block address, and

each directory tag encodes the set of sharers of the asso-

ciated block. Sparse directories are energy-efficient; how-

ever, due to their limited associativity, they are subject to set

conflicts that result in evictions of set entries. To preserve

the correctness of the cache coherence, sparse directories

force invalidation of the cached blocks that correspond to

the evicted entries. This can pose large performance over-

heads due to additional cache misses in processors’ private

caches.

D
ir
−

In
d

u
c
e

d
 I

n
v
a

lid
a

ti
o

n
s

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 811 Copyright @ 2021 Authors

Private life

×

×

∼ ×

Load Evict Load (by Px) Load (by Py)

Evict (last copy)

CACHE
BLOCK

DIRECTORY
ENTRY

CACHE
BLOCK

DIRECTORY

ENTRY

Figure 2: Lifetime Behavior of Cache Block and Directory Entry: The life of a private block (left) vs. a shared block (right).

Figure 1a and 1b show, respectively, the rate in which the

directory forces invalidations back to the private cache hier-

archy and the corresponding increase in cache miss rate, for

different sizes of a sparse directory. The different sizes are

labeled as ratios, which denote the provisioned size of the

directory. For example, a 1 corresponds to a system with

as many directory entries as the number of blocks that can

be cached. The invalidation rate (and in turn the increase

in miss rate) mainly depends on the relative directory and

cache size and associativity, and the working set size of a

given application. The smaller the directory, the more set

conflicts, and consequently the more directory-induced in-

validations, will occur. If the working set of the application

fits in the directory, no conflicts occur and performance is

ideal.

Reducing the eviction frequency, and therefore the re-

sulting extra misses, requires over-provisioning the num-

ber of directory sets and associativity. As the results show,

and as previous research and real implementations have

also suggested [9, 12], set-associative directories need to be

over-provisioned by more than 2 in order to reduce evic-

tions, while still providing no guarantees. CMP architec-

tures that implement a directory as part of the shared LLC,

i.e., in-cache, can achieve a near ideal case since they nat-

urally encompassed an over-provisioned design. However,

such implementations tend to result in an extremely over-

provisioned case since the number of tags in the LLC could

greatly exceed the number of tracked blocks in the private

caches (e.g., 8× [25]).

Enlarging the size of the directory negatively impacts the

directory access latency, area requirements, and energy con-

sumption. Cuckoo directory [11] and SCD [23] report an

acceptable provisioning size of 1.5 , yet it is still signif-

icantly sub-optimal. Given that area and power will be the

most invaluable on-chip resources, it is important to seek

for alternative, more scalable directory solutions.

 Observations and Motivation

Instead of reducing directory evictions by enlarging the di-

rectory, this work aims at reducing directory-induced in-

validations by just not enforcing them in certain (common)

cases. The key observation is that the directory forces inval-

idations conservatively rather than selectively, oftentimes

targeting blocks that are private to processors and by na-

ture are not subject to coherence inconsistencies. In what

follows, we describe the lifetime of cache blocks and direc-

tory entries, and we motivate our approach by showing that

forcing the invalidation of private blocks is not only unnec-

essary, but more importantly, particularly detrimental.

The life of a block begins with a cache miss that loads

new data into the private level of the cache hierarchy (Fig-

ure 2). The coherence protocol operates on the assumption

that all data may become shared at any time; hence, an en-

try is always allocated at the directory to track the sharing

status of the block and ensure coherence during its lifetime.

The life of the block in the cache will end when a set conflict

in the cache causes its replacement, or when a set conflict

in the directory forces its invalidation.

Each block’s life begins as private, where the block re-

mains exclusive to the processor which initially loaded it.

The life of the block may remain private during its lifetime

(Figure 2-left), or may become shared (Figure 2-right). A

block enters a “shared life” when a different processor ref-

erences it, and remains shared till the end of its life.1

During the private life of a block, the corresponding di-

rectory entry experiences a period of “silence”. This hap-

pens because all references to the block are issued by its

exclusive processor and satisfied privately, thus never in-

voking the coherence protocol.2

Truly private blocks or those having “long” private life

will therefore remain silent in the directory till their eviction

from the directory. However, while the silent entries track-

ing private blocks will be moving relatively fast towards the

LRU position of their directory sets and get victimized, the

actual blocks in the cache might be highly active (hot). As

a result, many evictions in the directory may force inval-

Silence time Active time

Silence time

Private-to-Share
transition

Private life Shared life

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 812 Copyright @ 2021 Authors

Force
Eviction

Force
Eviction

Private life Private life

%
 D

ir
e
ct

o
ry

 E
v
ic

ti
o
n
s

×

Load A

Re-Load

Re-Load

120

100

on−Private on−Shared on−Uncached

CACHE 80

BLOCK

60

40

DIRECTORY

ENTRY
Evict

20

Evict
0

Figure 3: Forced invalidation of private blocks often results in

misses that reload the same blocks.

Request / Result

Load E:
Evict Dead Entry A

Re-Load A:
Evict Dead Entry B

Re-load B:

Evict Active Entry C

Dead Entries causing

set pollution

Figure 4: Pollution in directory sets due to reloads of prematurely

evicted private blocks.

idations of private blocks that are still hot—hence likely

to be recalled. Eventually, this could cause a sequence of

long latency misses by the same processor reloading the

same block, seriously hurting the overall system perfor-

mance (Figure 3).

In addition to the significant impact they will have on

the average miss latency, those misses will also disturb the

locality that exists in the directory. In essence, reloading re-

cently evicted private blocks creates an implicit promotional

mechanism of silent (i.e., “dead”) directory entries from the

evicted position to the MRU (Figure 4). Maintaining dead

entries in such a way is not only unnecessary, but will cause

pollution in the directory sets, disturb the directory effec-

tiveness and further hurt the overall performance.

The aforementioned observations present a highly un-

desirable case that could otherwise be avoided if private

blocks were not invalidated by the directory. The poten-

tial opportunity is shown in Figure 5 which breaks down

the directory-induced invalidation messages into those tar-

geting private versus shared cached block, while indicat-

ing (with “x” mark) the percentage of blocks that will be

reloaded soon after a directory-induced invalidation. The

results, which are based on a 1/4 under-provisioned direc-

tory size and LRU replacement policy, indicate that many

directory evictions will invalidate private cached blocks

Figure 5: Breakdown of directory-induced invalidation targets.

(72%), while 80% of them will be requested again, causing

extra cache misses and consequently degrade performance.

As the size of the directory shrinks and as long as private

data persist, the potential for improvement would be of ma-

jor significance.

3 Stash Directory

Stash Directory evicts directory entries that track private

blocks optimistically without forcing invalidations of corre-

sponding cache blocks. Allowing the private cache blocks

to continue enjoying their private life could significantly re-

duce cache misses and improve the system performance.

Furthermore, the resulting permanent evictions of the di-

rectory’s dead entries reduce the pollution in the directory

and increase the utilization of the directory space.

 Basic Organization and
Operation

Stash Directory is a sparse directory design that allows con-

flicting entries tracking private blocks to be evicted without

forcing invalidation of the actual block in the cache. In or-

der to recognize whether a directory entry tracks a private or

a shared block, each entry stores a bit indicating the lifetime

sharing state of the tracked block. The bit is initially clear,

indicating that the data block is private. The bit is set when

the block changes from private to shared—an event that oc-

curs when a second processor, other than the one that ini-

tially loaded the block, refers to it (i.e., issues a miss). The

directory entry can recognize this event since it is always

aware of the current sharers of the block. In fact, as the

first processor has the exclusive ownership of the block, the

directory can easily detect a private-to-shared event by just

sensing a directory lookup from another processor. Even-

tually, when the directory entry reaches its eviction point,

the bit is tested and, if it is clear (i.e., the cached block is

still private), then no invalidation is enforced. Note that

the extra bit is required since the existing sharer-vector in

the directory entry is inadequate for identifying whether the

block has been private to only one core during its lifetime.

For example, it is possible for a nominally shared block to

appear as private at different sharers at different points in

time.

Silence time

Silence time

MRU LRU

D C B A

E D C B A

A E D C B

B A E D C

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 813 Copyright @ 2021 Authors

Stash Directory relinquishes cached blocks, leaving

them “hidden” from the directory itself. Allowing such

blocks to reside in the cache is safe as far as the blocks

are guaranteed to be truly private to a specific processor.

However, guaranteeing a truly private block is not always

possible at run time. A block may transition from private to

shared at any time; hence the “transitioning” miss may oc-

cur while the block is hidden from the directory, a situation

we call a false miss. On a false miss, the coherence protocol

sees a regular directory miss and falsely assumes that the

referenced block is not present in any private cache. There-

fore, the protocol forwards the miss to the shared LLC, ex-

pecting that it will be satisfied there.

Stash Directory delegates to the shared LLC and the co-

herence protocol the responsibility to detect a false miss

and avoid inconsistency. The shared LLC keeps a bit for

each cache block, indicating whether the block is possibly

“cached” in the lower levels of the hierarchy. This bit is

set by an explicit eviction notification message sent by the

directory whenever it evicts entries without invalidating the

cached copy. Therefore, a miss in the directory followed by

a hit in the LLC having the “cached” bit set will immedi-

ately reveal a false miss. On detecting a false miss, the LLC

controller will refuse to satisfy the miss and instead invoke

back the coherence protocol to issue a broadcast request for

discovering the most up-to-date copy of the block. After the

miss is completed, the coherence protocol will register the

block in the directory and reset the corresponding cached

bit in the LLC.

As discussed, Stash Directory requires a shared LLC,

which is typical in modern CMPs [9]. The additional stor-

age required for the extra bits in the LLC is negligibly small

(<0.2% of the cache size), is independent of the core count

and scales perfectly with the cache size. Also note that an

inclusion property is required between hidden blocks and

the corresponding LLC entries. Fully inclusive LLCs (a de-

sign choice in most of Intel’s CMP designs so far) inher-

ently guarantee this property.3 For non-inclusive caches [9],

it is relatively easy to selectively enforce inclusiveness only

for the blocks that are hidden. Specifically, (1) a cached

block that is becoming hidden must be installed to the LLC

if it is not already there (directory writes the victim’s tag in

LLC); and (2) a back-invalidation operation is selectively

enforced only when the LLC block being evicted has the

cached bit set. Lastly, handling a false miss requires stan-

dard support at the LLC controller to set/test the cached bit,

and a standard broadcast read operation by the coherence

protocol.

 Handling LLC evictions

When an LLC block with its “cached” bit set is evicted,

the cached (hidden) copy of that block must be removed

3The inclusion property forces a back-invalidation operation to all the

sharers of the block being evicted.

from the private cache hierarchy. Given that LLC entries

with their cached bit set have no directory information, the

eviction’s back-invalidation operation will have to be broad-

cast. This would significantly increase the frequency of

broadcasting operations—and hence the bandwidth—since

for every hidden private block, a broadcast operation is on

the horizon. To avoid such situations, the cache system must

implement clean eviction notifications (common in current

commercial processors, e.g., AMD Opteron [9]). Accord-

ingly, when a block is evicted from a private cache hierar-

chy, an eviction notification is sent to the directory to update

the sharers to better reflect the sharing status of the block.

If a notification does not find a corresponding entry in the

directory, then it is implied that the block being evicted is

a hidden private block and is currently tracked by the LLC.

Therefore, the eviction notification will be forwarded to the

LLC, and it will clear the cached status bit as there would

be no longer a cached copy.

Clean eviction notifications are likely to clear the cached

status of LLC blocks before they get evicted, hence reduc-

ing unnecessary broadcasts. In addition, we can further de-

lay the cached LLC blocks from being evicted by allowing

LLC sets to replace first those entries for which eviction no-

tifications have been received. Further techniques to elim-

inate the negative effects of inclusiveness can be found in

prior research [16].

 Handling Shared Data

Stash Directory handles the evictions of entries tracking

shared data blocks as a conventional sparse directory—it

enforces invalidation on all cached copies. Although this

may cause the invalidation of a block in more than one cores

at once, it is preferred because, in contrast to private blocks,

hiding shared blocks (especially migratory) could signifi-

cantly increase the frequency of false misses as those blocks

do not remain silent but are frequently referenced by differ-

ent processors. In addition, since directory is sensitive to

the temporal locality of blocks that are actively shared (re-

call Figure 2), victimized shared entries (LRU) are likely to

track shared blocks which are either dead, or temporarily

private, hence benefit from eviction. In the latter case, the

eviction will give the the opportunity to a shared block to be

reloaded as private (without a false miss) and benefit from

re-entering the Stash Directory if it is to remain private.

Although recent sparse directory implementations such as

AMD HT Assist [9] suggest to explicitly avoid evicting

shared entries, Stash Directory naturally avoids such evic-

tions as it exploits the temporal behavior of actively shared

blocks while reducing the pollution of directory sets from

truly private entries.

 Analysis on False Misses

Probability of a false miss. As described in Section 2, the

transition of a block from private to shared may happen at

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 814 Copyright @ 2021 Authors

E_dir E_cache

Figure 6: The distribution of memory blocks based on their Pri-

vate Lifetime (load-to-shared distance). Distance is measured in

where D and C is the directory and the cache size (in num-

ber of sets), respectively. α is a factor introduced to correct

the mismatch between the distance as measured at the direc-

tory and the one that is seen at the processor’s side. There

are two reasons that create this mismatch: First, the direc-

tory absorbs memory references from all processors, hence

a distance in the directory may appear larger relative to what

a processor experiences. Second, only memory references

that will invoke the coherence protocol or miss in the pro-

cessor’s cache will reach the directory, and therefore many

will be filtered out. If we assume that all processors ref-

erence memory blocks at the same rate and that Ps is the

probability of a reference reaching the directory, then a rea-

sonable approximation for α would be:

memory references issued by the thread which loads the block.
1 1

The distribution is largely an application attribute, but also de-

pends on the relative progress of threads.

α ≈
core count

×
P

(4)

any time. A false miss occurs only when this transition takes

place after the block is relinquished from the directory and

before it is evicted from the cache, i.e., while the block is

hidden. Theoretically, the longer the block’s entry lives in

the directory, the more likely that we can track the transi-

tion, and thus the lower probability of a false miss.

Figure 6 illustrates the distribution of memory blocks

based on their private lifetime for a given application. Ex-

amining the distribution of blocks’ private lifetime is useful

because when compared with directory and cache eviction

times, it can provide insights about the probability of reach-

ing false misses. For example, if the point Ec represents the

average eviction time of a cache block, and Ed the average

eviction time of a directory entry, then the fraction of transi-

tions appearing between the two points is the average num-

ber of memory references that would fall into a false miss.

Hence, the average false miss probability is expressed as:

P (false miss) = Pt(Ed < t < Ec) (1)

where Pt a probability distribution as the one depicted in

Figure 6. We approximate Ec and Ed as follows.

Let private-to-shared reuse distance be the distance be-

tween two references on the same block, with the second

being the one that transitions the block into shared. Then,

we can derive the probability distribution of this distance as

one appears in a cache (pt), and as one appears in the direc-

tory (qt). These distributions are basically the same as Pt

(Figure 6), except that pt may deviate (density shifted more

toward the left), depending on whether and how the blocks

are privately reused before they transition to shared. Then,

assuming a fully-associative cache and directory [14],

The final expression for the false miss probability is

P (false miss) = qt(t > αD) + pt(t < C) − 1 (5)

which is derived from Equations (1), (2), and (3), and is dic-

tated by the application- and machine- specific properties of

qt, pt, and Ps, the cache and directory parameters, and the

core count.4

Upper bound for false misses. The worst case with re-

gard to false misses occurs if all private-to-shared refer-

ences miss in the directory and hit in a cache. In such

case, the total actual number of false misses will be equal to

the total number of private-to-shared references. The tran-

sition from private to shared can occur at least once for each

shared block, but it may also occur more times as the same

block may be evicted and reloaded again. A reloaded block

always appears as private and thus creates a possibility for a

new private-to-shared transition. Thus, the upper bound can

be expressed as

false misses < # shared blocks × S (6)

where S is the average number of times a shared block will

go through a private-to-shared transition, which we could

approximate by calculating the probability of a shared block

falling into a reuse distance larger than Ec and Ed.

For shared data sets that are relatively small and fre-

quently accessed (i.e., have short reuse distance), the S fac-

tor could be very small and the bound closer to the actual

number of application’s shared blocks. In such cases, the

worst case for false misses is largely an application-specific

attribute that can be easily evaluated before any architec-

tural exploration. A comparison between this worst-case

bound and experimental measurement of false misses is pre-
sented later in Section 5.1.

Pt(t > Ed) = qt(t > αD) (2)

Pt(t < Ec) = pt(t < C) (3)
4For set-associative caches, the expression can be approximated based

on the same probability distributions [4, 14].

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

PrivateOtoOShare Transition

ca

ch
e

b
lo

ck
s

s

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 815 Copyright @ 2021 Authors

×

× × × ×
×

×

×
×

×
×

Table 1: Machine Architecture Configuration.

BENCHMARK INPUT BENCHMARK INPUT

barnes 16K (particles) bodytrack simsmall

cholesky tk25.O canneal- simsmall

fft 256K (points) ferret simsmall

fmm 16K (particles) fluidanimate simsmall

lu 512 (matrix) streamcluster simsmall

ocean 258 (grid) vips simsmall

radix 8M (keys) x264 simsmall

water-ns 512 (mol.)

Table 2: Workloads and Input Data Sets.

In summary, the analysis suggests that the rate of

false misses can be approximated before performing time-

consuming evaluations, and can provide valuable hints to-

wards workload characterization and design exploration.

4 Evaluation Methodology

 System Model

We simulate a 16-core tiled CMP system using x86-64

memory traces collected with PIN [19]. The traces are

fed into a detailed cycle-accurate cache and interconnect

model. Each tile has an in-order single-threaded core with

private L1/L2 cache, a shared L3 bank, and a directory

slice. The tiles are interconnected through a 4 4 2D mesh

network-on-chip (NoC). All private caches are kept co-

herent by a MESI coherence protocol and a distributed,

address-interleaved directory. Table 1 summarizes the main

architecture configuration parameters.

 Workloads

We study multithreaded workloads from the splash2 and

parsec suites [5, 27] with input sizes as listed in Table 2.

Detailed simulations are performed during both parallel and

sequential phases of the workloads and statistics are col-

lected at the end of a parallel phase. We use all available

processor cores by spawning 16 concurrent threads in all

experiments. For stable and repeatable measurements, we

prevent thread migration by binding each thread to the first

touched core. For workloads that create more threads than

CPUs we enforce deterministic scheduling.

 Evaluated Schemes
We evaluate Stash Directory (or “Stash” for short) rela-

tive to a conventional sparse directory implementation [12]

(“Sparse” for short). We also compare against the state-

of-the-art approach to reducing the number of required

directory entries, which deactivates coherence for private

blocks [10]. We refer to the latter scheme as PDC (stand-

ing for Private Deactivation Coherence). More schemes are

qualitatively compared in Section 5. All the evaluated de-

signs share the same basic structure—a set-associative ar-

ray with each entry holding a cache tag and a sharer vec-

tor. The number of tags (entries) in the directory defines the

maximum number of addresses that can be represented in

the directory. This number, essentially the storage capacity

of the directory, is reported in relation to the total lines in

the tracked caches; i.e., 1 when it is equally-provisioned,

1.5 , 2 , etc. when over-provisioned, and 1/2 1/4 etc.

when under-provisioned.

All designs use a full sharer vector per entry to record

the sharing information. Note that the sharer set can be

encoded in various ways, and there is rich literature on

tackling the scalability limitations of a full-map sharer vec-

tor [1, 6–8, 12]. It is important to remember that the sharer

information encoding is independent of how the evaluated

schemes are organized. Directory access latency and power

are modeled after the same technology assumed for the pri-

vate L2 caches.

Stash Directory is augmented with an extra bit per en-

try denoting whether the block being tracked is private or

shared, and the LLC with an extra bit per entry (“cached”

bit). References or replacements in the LLC will trigger a

broadcast operation if the cached bit is set. Eviction notifi-

cations that reach the LLC will clear the cached bit.

For the PDC scheme we employ mechanisms that clas-

sify memory pages into private or shared, and we deactivate

the coherence protocol for those memory requests sorted

as private. The classification and detection mechanism re-

quires modifications to the TLB miss handler and the page

table, which we implement as described in [10].

5 Evaluation Results

 Impact of Directory Size on Cache
Performance

By eliminating many directory-induced invalidations, Stash

prevents the increase in cache misses and improves cache

performance. Figure 7 shows the increase in cache miss rate

when employing a conventional sparse directory in contrast

to Stash. The first four bars in each workload correspond

to Sparse, starting with a 2 provisioning size till down to

1/4 . The last bar shows the result of Stash, when it is

under-provisioned to 1/4 . As the results illustrate, in al-

most all cases Sparse severely hurts the cache performance

if not over-provisioned. In contrast, Stash is able to signif-

icantly alleviate that impact, or in many cases completely

elide it. For almost all applications, a 1/4 provisioned

Stash can perform as well as a 2 provisioned Sparse. Con-

sequently, Stash can reduce the space requirements by eight

Model Configuration Values

Cores 16 in-order cores, tiled, 2-issue width.

L1 Cache 32 KB D + 32KB I, 4-way, 1-cycle tag latency

L2 Cache 256 KB private, 8-way , 3-cycle tag latency

L3 Cache 16MB shared (NUCA), 16-way, 5/30-cycle tag/data

Coherence MESI protocol, clean eviction notification.

Directory 2x-1/8x provisioned, 8-way, LRU.

NoC 4× 4 2D mesh, 2-stage routers, wormhole-switched,
determ. X-Y routing, Ack/Nack flow control.

Main mem. 70-cycle latency, 4KB pages, 64-entry 4-way TLB

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 816 Copyright @ 2021 Authors

● ● ● ● ● ●

●

●

●
● ● ●

(%
)

M
is

s
 R

a
te

 C
h

a
n

g
e

(%
)

M
is

s
 R

a
te

 C
h

a
n

g
e

×

×
×

×

×

×

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Figure 7: Cache Miss Rates for different Sparse and Stash Directories. Results are normalized to a 2 Sparse Directory. Cache misses

count the accesses that miss in both L1 and L2.

200

160

ocean

200

160

bodytrack

200

160

canneal

120

120

120

80

80 80

40

40 40

0

0

2x 1x 1/2x 1/4x 1/8x 1/16x

Directory Provisioning Factor

−40

2x 1x 1/2x 1/4x 1/8x 1/16x

Directory Provisioning Factor

0

2x 1x 1/2x 1/4x 1/8x 1/16x

Directory Provisioning Factor

Figure 8: Examples of the Cache Miss Rate Sensitivity to the Directory Provisioning Size.

times (i.e., to 1/8 of the original size) with essentially no

impact on cache performance. In contrast, a Sparse direc-

tory with such a small size would have increased the miss

rate significantly (e.g., by more than 40% for radix). In

some cases Stash can perform better than 2 Sparse (e.g.,

bodytrack, fft), indicating that even with 2 size, a Sparse

can have a negative impact on performance.

Following how the miss rate changes as the capacity of

the directory varies can offer further insight on how the

Stash scheme performs. In the case of the conventional

Sparse, decreasing the directory will always create more

conflicts, and since every conflict enforces invalidation, the

miss rate will always suffer more. In the case of Stash, how-

ever, the cache performance won’t be affected unless the di-

rectory starts evicting entries that track shared blocks. This

situation will possibly occur when the directory size be-

comes smaller than that of the working shared data set size

that is usually much smaller than that of the overall work-

ing set. The first example in Figure 8 (ocean) illustrates a

case in which cache performance remains unaffected even

with heavily under-provisioned Stash capacity. In this ex-

ample, Stash can be as small as 1/16 without impacting

cache performance. We found that such a significant under-

provisioning opportunity exist in 5 out of the 15 studied

workloads (fft, ocean, radix, vips, x264). By decreasing

further the directory capacity, the miss rate will eventually

become sensitive—a point which could be associated with

the shared data’s working set size of the application. Typ-

ically, most applications will naturally demonstrate some

level of sensitivity as shared entries in directory will conflict

with newly loaded shared or private entries. Stash alleviates

the impact compared to Sparse as illustrated by the fluidan-

imate’s example in Figure 8. In this case, Stash Directory

degrades the cache performance in a slower rate compared

to Sparse. Note that in this example a Stash with 1/8
capacity is able to keep the miss rate lower than the large,

2 Sparse directory. Lastly, applications with poor shared

data locality or stream-like references to private data may

prevent Stash from being effective. Applicatons with rela-

tively hight miss rate, such as canneal and streamcluster are

not much sensitive to the changing directory capacity (e.g.,

Figure 8).

False misses. False misses trigger broadcast operations,

which are more demanding in terms of bandwidth. If false

misses occur frequently, then they could threaten the over-

all energy and performance of a system. Our analysis in

Section 3.4 shows that the probability of a false miss and

an upper bound can be easily approximated and could be

fairly small. Figure 9 shows experimental results for the

amount of false misses, for all the applications in our study

and for different directory sizes. Also, for each applica-

tion, we draw the upper bound given by Equation (6) as-

2x Sparse 1x Sparse 1/2x Sparse 1/4x Sparse 1/4x Stash

Sparse
● Stash

●

● ● ● ● ●

(%
)

M
is

s
 R

a
te

 C
h

a
n

g
e

M

is
s
 R

a
te

 (
N

o
rm

a
liz

e
d

)

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 817 Copyright @ 2021 Authors

×

×
×

×
×

×
×

×
×

1x 1/2x 1/4x 1/8x 1/16x

40

30

20

10

0

Figure 9: False misses relative to the total misses for different

stash directory sizes. The dots show a theoretic upper bound ap-

proximation.

suming S = 1.01 (shown with a dot above the bar—only

for the 1/4 case). The results show that the number of

false misses is around 6% on average for the 1/4 case,

and they range from 0% to 25% in the worst case. As ex-

pected, false misses are relatively sensitive to the directory

size. As we will show in the rest of this section, these false

misses do not raise significant concerns and do not adverse

the improvements that Stash offers in overall.

 Performance Comparisons

In Figure 10 we compare bandwidth demands, execution

time and energy consumption of 1/4 Sparse, PDC and

Stash directories. All the results are normalized to a 2
base sparse directory.

Bandwidth requirements. Figure 10a shows the NoC traf-

fic generated with each scheme, measured as the total num-

ber of bytes transmitted during execution. In Stash, we

break down the additional traffic generated from broadcasts

into broadcast traffic due to false misses, and due to LLC

evictions of hidden blocks (marginal difference). Despite

the added broadcast traffic, Stash has bandwidth require-

ments similar to the 2 Sparse, while when compared to

equal-size Sparse (1/4 Sparse), it reduces the overall NoC

traffic by 50% on average. The improvements come mainly

from the reduction in requests for data (i.e., misses), as well

as the reduction in directory-induced invalidation and their

associated writebacks.

Compared to PDC, Stash achieves slighly less bandwidth

savings on average; This is due to the large amount of co-

herence msgs saved when the data classification mechanism

is in a good effect for PDC. In cases such as water-ns, how-

ever, Stash can be significantly more bandwidth-efficient,

achieving improvements of up to 35% over PDC. The re-

sults show also that broadcasting in Stash adds a 0% to 10%

of extra traffic. Broadcasting can be completely eliminated

if we replace the cached bit at LLC with the actual ID of

the core holding the block. This will cause however more

redundant storage in LLC and therefore is a design choice

that should be further evaluated.

Overall performance. Figure 10b shows execution time

achieved by the studied schemes. On average, 1/4 Stash

can improve performance by 16% compared to Sparse, and

by 2% compared to PDC. In contrast to Sparse, Stash tol-

erates well the under-provisioned directory size (1/4) and

performs equal to the 2 Sparse directory. This suggests

that Stash can reduce space requirements to as low as 1/8
that of a conventional directory without compromising per-

formance. Considering the strong correlation of perfor-

mance to the cache miss rate, we expect that Stash can often

sustain performance even for smaller directory sizes (e.g.,

ocean in Figure 8),

The quantitative comparison between PDC and Stash

does not lead to a clear winner on average; however it high-

lights the importance of Stash versus PDC in design deci-

sion making. Stash is a fundamentally different approach

as it addresses the problem of handling private data in an

aggressive rather than conservative manner; Stash Direc-

tory evicts silently all entries that appear to be optimistically

private, eliminating all directory-induced invalidations on

private blocks, and relying in a simple mechanism to dis-

cover false cases. In contrast, PDC explicitly aims at saving

space by preventing private blocks from entering the direc-

tory; however, it can do so only for some fraction of them as

its detection mechanism is conservative and cannot tolerate

incorrect speculations. Essentially, Stash is expected to be

highly effective in applications where memory pages have

mixed private and shared data, as well as good temporal lo-

cality, because it will gradually remove all private blocks

from the directory. However, in memory-bound applica-

tions (e.g., canneal), Stash performs less effectively, reach-

ing equal to or worse than PDC performance levels.

Furthermore, Stash is a simpler design approach in that

it is implemented at the last level of the cache hierarchy, and

is decoupled from in-core structures such as TLBs—which

are already quite complex and heavily accessed. Stash is

in turn a transparent and effective optimization that works

independently of the type of cores that are plugged in, and

of the type of system software that is running. In a further

perspective, Stash and PDC are orthogonal techniques, and

therefore can be combined to provide the best of both or

even additional improvements.

Energy efficiency. Reduction of bandwidth demands and

execution time directly translates to energy savings. To as-

sess the energy consumption, we use an intuitive model that

considers the dynamic energy consumed in the directory,

the interconnect, and the L2/L3 cache lookups, including

coherence requests. The energy consumed per directory

and cache access is estimated using CACTI [15] assuming

a 32nm technology. For interconnect, we assume that the

energy consumption is proportional to the amount of data

transferred and that lookups on network routers consume

four times more power than link traversals. . Note that we

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

(%
)

F
a

ls
e

 M
is

s
e

s

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 818 Copyright @ 2021 Authors

3.0

2.5

2.0

1.5

1.0

0.5

0.0

(a) Bandwidth

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(b) Performance

2.0

1.5

1.0

0.5

0.0

(c) Energy

Figure 10: Comparison of 1/4× under-provisioned directory organizations. Results are normalized to 2× Sparse.

do not account static energy or energy consumed in other

components. Figure 10c presents the results for the differ-

ent schemes. Stash Directory achieves partial reductions in

energy dissipation in the cache hierarchy by 18% compared

to Sparse, and compares equally to the PDC approach.

 Scalability

A feasible directory design for coherent many-core CMPs

must scale well across an increasing number of cores. Area

and energy requirements must be kept minimum, as they

will present scarce resources in many-core chips, while per-

formance should be sustainably unaffected by the existence

of the directory. Stash inherits the power efficiency of

sparse directories, as well as the numerous scalable sharer

encoding techniques. Therefore, what remains essential to

examine is whether the benefits of the Stash design extend

as the core count increases, continuing to offer storage im-

provements without affecting the performance or energy of

the system.

Figure 11 presents performance and bandwidth scaling

trends for the three different organizations. To scale out the

evaluation to many cores, we spawn up to as many threads

as possible on a native machine, trace the memory refer-

ences of each thread and the instructions between them,

and feed the trace to a cache simulator. The results show

that Stash Directory scales well on average. Cache perfor-

mance gets better as the core count increases mainly be-

cause of the relation of Stash with the size and locality of

shared data sets—which are basically independent of the

core count. Despite the broadcasting operations (that are in-

herently non-scalable), Stash bandwidth remains relatively

insensitive, suggesting that the amount of broadcasts is not

significant enough to impact bandwidth and energy nega-

tively. PDC follows Stash closely, but for high core count

its overall performance is less robust. This is due to a de-

graded effectiveness in classifying the private blocks. In

the case of the base directory, the core growth will directly

increase the directory-induced invalidations, which will in

turn degrade the performance severely.

1/4x Sparse 1/4x Pdc 1/4x Stash

E
n
e
rg

y
 (

N
o
rm

a
li
z
e
d
)

E
x
e
c
u
ti

o
n
 T

im
e
 (

N
o
rm

a
li
z
e
d
)

B
a

n
d

w
id

th
 (

N
o

rm
a

liz
e

d
)

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 819 Copyright @ 2021 Authors

×

1.5

1.4

1.3

1.4

1.2

1.2

1.1

1.0

0.9

16 32 64 128 256 512 102

Core Count

1.0

0.8

0.6

16 32 64 128 256 512 102

Core Count

Figure 11: Many-core Scalability: Proxies for performance (left) and energy (right). The measurements assume that the total cache size

increases in proportion to the core count and the directory size remains 1/4× the cache size.

6 Related Work

There is a large body of work addressing the scalability

challenges of cache coherence directory. This section dis-

cusses the most related prior work, focusing on studies

looking into the storage inefficiencies in the set-associative

directory structure.

Duplicate-tag and tag-less organizations. Duplicate-tag

directories, used in Piranha [3] and Niagara 2 [21], can keep

one-to-one correspondence to cache blocks, and do not re-

quire keeping extra sharing information. Their storage re-

quirements are equal to the aggregated L1 tags. However,

their associativity must be equal to the cache associativity

core count, which adds significant overheads per lookup

and makes this organization far from scalable. “Tagless di-

rectory” [28] uses instead a set of Bloom filters to test for

tag membership and does not rely on fully duplicated tags.

This makes it even more storage efficient than duplicate-

tags (especially for small core counts) and also improves

energy dissipation; however, similar to the duplicate-tag di-

rectory, it has a quadratic growth in chip energy dissipation

for the aggregate of all tag-less directory slices and fails to

scale beyond 128 cores.

Sparse directories. Sparse directories [12] are more energy

efficient than the duplicate-tag directory since they have a

relatively low associativity. However, their storage must be

over-provisioned to reduce conflicts in directory entries as

they may negatively affect performance. Hence, their de-

sign usually incurs significant area overheads. Apart from

that, Sparse directories must keep full sharer vectors for

each cached block, which adds storage overheads that do

not scale with core count. This limitation has been ad-

dressed by numerous prior works [1, 6–8, 12, 17, 18, 26, 28,

29] and is not in the scope of this work.

To reduce the over-provisioning requirements, recent

proposals such as Cuckoo [11] and SCD [23] directories

resolve set conflicts using multi-hashing indexing and in-

sertion. Although these techniques increase the space ef-

ficiency, they do not take into account any characteristics

unique to the coherence directory behavior and hence are

limited in their potential. Furthermore, the aforementioned

techniques require progressive replacement/insertion oper-

ations, and thus they affect the average latency of the direc-

tory lookup. The relaxed inclusion property of Stash Di-

rectory is orthogonal to the set conflict resolving techniques

used by Cuckoo or SCD, and thus can be combined.

An alternative approach for increasing the effectiveness

of the directory space is to deactivate the coherence for

private memory blocks [10]. We compare this approach

against Stash in the previous sections, referred as PDC. In

summary, PDC depends on a page-granularity data classi-

fication mechanism [13] that limits its potential. Also, it

relies on page table modifications, which could be hard to

justify for relatively minor microarchitecture performance

improvements. Stash is instead a fairly simple and transpar-

ent scheme that can be easily adopted in certain designs.

Lastly, Alisafaee [2] recently proposed a scheme called

“spatiotemporal coherence tracking” (SCT) that saves di-

rectory space by tracking temporarily private data in a

coarse-grain fashion. Temporarily private data are shared

data that appear private for long periods, i.e., data accessed

and cached by a single core most of the time. The au-

thor evaluates SCT against workloads that are dominated by

shared data footprints and shows that SCT can greatly ben-

efit from the proposed compaction technique. Specifically,

SCT reports 1/2× effective provisioning.

In comparison, Stash does not directly optimize for

shared data and thus applications with dominant shared sets

may not benefit as much as with SCT. However, Stash can

exploit effectively the (even limited) private data of such

applications, while PDC is less likely to be effective is such

a case. Also, Stash will sometimes treat temporarily pri-

vate blocks as truly private and benefit from them as SCT

would. For example, a block that has a long private life

before transitioning to share will be silently removed from

the directory and remain hidden till the time the transition.

While SCT compacts entries in order to save space and re-

quires fairly complicated mechanisms and policies to man-

age the compacted regions, Stash simply removes entries

Base

 ● PDC
Stash

●
● ●

● ● ● ● ● ●
● ●

● ● ●

M
is

s
R
a
te

 (
N

o
rm

a
li
z
e
d

)

B
an

d
w

id
th

 (
N

o
rm

al
iz

ed
)

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 01 February : 2021

Page | 820 Copyright @ 2021 Authors

out of the directory without further storage considerations.

For workloads with more private data, Stash is expected to

be substantially more storage- and cost-efficient than SCT.

The two approaches may be combined synergistically to of-

fer a robust solution across many application domains.

7 Conclusions
This work proposed and evaluated Stash Directory, a novel

sparse directory design that requires significantly smaller

storage than conventional directories. Stash Directory al-

lows directory entries tracking private blocks to be evicted

without invalidating the corresponding cached blocks. As a

result, it eliminates performance loss due to premature data

block invalidations in private caches, and at the same time

reduces the pollution in the directory sets that are caused by

subsequent recalls of the same blocks. When private mem-

ory blocks are dominant in caches, which is often the case

with parallel and multiprogramming workloads, Stash Di-

rectory offers an effective, scalable and transparent solution

that has nearly constant power and area utilization regard-

less of the core count.

References

[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An

evaluation of directory schemes for cache coherence. In

Proc. of the Annual Int’l Symp. on Computer Architecture,

ISCA, 1988.

[2] M. Alisafaee. Spatiotemporal coherence tracking. In Proc.

of the Annual Int’l Symp on Microarchitecture, 2012.

[3] L. A. Barroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,

and B. Verghese. Piranha: a scalable architecture based on

single-chip multiprocessing. In Proc. of the Annual Int’l

Symp. on Computer Architecture, ISCA, 2000.

[4] K. Beyls and E. H. D. Hollander. Reuse distance as a metric

for cache behavior. In Proc. of the IASTED Conf. on Parallel

and Distributed Computing and Systems, 2001.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

benchmark suite: characterization and architectural implica-

tions. PACT, 2008.

[6] D. Chaiken, J. Kubiatowicz, and A. Agarwal. Limitless di-

rectories: A scalable cache coherence scheme. In Proc. of

the Int’l Conf. on Architectural Support for Programming

Languages and Operating Systems, ASPLOS, 1991.

[7] G. Chen. Slid - a cost-effektive and scalable limited-

directory scheme for cache coherence. In Proc. of the Int’l

PARLE Conf. on Parallel Architectures and Languages Eu-

rope, PARLE, 1993.

[8] J. H. Choi and K. H. Park. Segment directory enhancing

the limited directory cache coherence schemes. In Proc. of

the Int’l Symp. on Parallel Processing and Parallel and Dis-

tributed Processing, IPPS/SPDP, 1999.

[9] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak,

and B. Hughes. Cache hierarchy and memory subsystem

of the amd opteron processor. IEEE Micro, 2010.

[10] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F.

Duato. Increasing the effectiveness of directory caches by

deactivating coherence for private memory blocks. In Proc.

of the Annual Int’l Symp. on Computer Architecture, 2011.

[11] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi.

Cuckoo directory: A scalable directory for many-core sys-

tems. In Proc. of the Int’l Symp. on High Performance Com-

puter Architecture, HPCA, 2011.

[12] A. Gupta, W. dietrich Weber, and T. Mowry. Reducing mem-

ory and traffic requirements for scalable directory-based

cache coherence schemes. In In Int’l Conf. on Parallel Pro-

cessing, 1990.

[13] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.

Reactive nuca: near-optimal block placement and replica-

tion in distributed caches. In Proc. of the Annual Int’l Symp.

on Computer architecture, ISCA, 2009.

[14] M. D. Hill and A. J. Smith. Evaluating associativity in cpu

caches. IEEE Trans. Comput., 1989.

[15] http://quid.hpl.hp.com:9081/cacti/. CACTI 5.3.
[16] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and

J. Emer. Achieving non-inclusive cache performance with

inclusive caches: Temporal locality aware (tla) cache man-

agement policies. MICRO, 2010.

[17] J. H. Kelm, M. R. Johnson, S. S. Lumettta, and S. J. Pa-

tel. Waypoint: scaling coherence to thousand-core architec-

tures. In Proc. of the Int’l Conf. on Parallel Architectures

and Compilation Techniques, PACT, 2010.

[18] C. Li, H. Wang, Y. Xue, X. Zhang, and D. Wang. Fast hier-

archical cache directory: A scalable cache organization for

large-scale cmp. In Proc. of the Int’l Conf. on Networking,

Architecture, and Storage, NAS, 2010.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:

building customized program analysis tools with dynamic

instrumentation. In Proc. of the Conf. on Programming Lan-

guage Design and Implementation, PLDI, 2005.

[20] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip

cache coherence is here to stay. Commun. ACM, 2012.

[21] S. Microsystems. Ultrasparc t2 supplement to the ultra-

sparc architecture. Technical report, 2007.

[22] B. W. O’Krafka and A. R. Newton. An empirical evaluation

of two memory-efficient directory methods. In Proc. of the

Annual Int’l Symp. on Computer Architecture, ISCA, 1990.

[23] D. Sanchez and C. Kozyrakis. Scd: A scalable coherence di-

rectory with flexible sharer set encoding. In Proc. of the Int’l

Symp. on High-Performance Computer Architecture, 2012.

[24] R. Simoni. Cache coherence directories for scalable multi-

processors. Technical report, 1992.

[25] R. Singhal. Inside intel next-generation nehalem microar-

chitecture. In Hot Chips 20, Stanford, CA,, 2008.

[26] D. A. Wallach. Phd: A hierarchical cache coherent protocol,

1992.
[27] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.

The SPLASH-2 programs: characterization and method-

ological considerations. ISCA, 1995.

[28] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos.

A tagless coherence directory. In Proc. of the Annual

IEEE/ACM Int’l Symp. on Microarchitecture, 2009.

[29] H. Zhao, A. Shriraman, and S. Dwarkadas. Space: sharing

pattern-based directory coherence for multicore scalability.

PACT, 2010.

