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Abstract 

Memory systems are becoming the focal point of computer 

architecture. We are expected to witness an increase in on-chip 

cache memory in the coming years, barring the development of 

novel micro- architecture techniques that boost processor 

speed. Recent designs frequently use three tiers of on-chip 

cache memory. More advanced cache design methodologies 

and possibly a reevaluation of some cache concepts are 

required due to the increasing reliance on on-chip caching. The 

inclusion property, in our opinion, is a strong contender for 

these ideas. This characteristic, while simplifies memory 

coherence protocols in multiprocessor systems, duplicates data 

over many levels of cache, which results in an inefficient use 

of cache memory space on the chip. In addition, stringent 

enforcement of the inclusion condition implies a "ripple effect" 

during updates, where one update at one cache level may 

trigger many updates at higher levels of the hierarchy. Many 

non-inclusion cache techniques for upcoming cache systems 

are covered in this research. We offer a couple of design 

options for non-inclusive cache designs. We demonstrate that 

the primary benefit of a non-inclusive cache design is its 

comparatively high level 2 (L2) hit rate, which reduces the 

average memory system access time. L2 miss rates for specFP 

and INT are each reduced by 40% and 28%, respectively, via 

non-inclusive cache. 

Key Words: Cache memory, cache access time, memory 

performance, inclusion property, multi-level cache. 
 

1 Introduction 

Cache memories have been used to improve the performance 

of computer systems by exploiting temporal and spatial 

locality characteristics for many years [14]. The very rapid 

advances in process technology means that a larger transistor 

budget is available to architects each year. In addition to many 

innovative microarchitectures to fully utilize this budget with 

execution logic, we witness the emergence of larger and more 

sophisticated on-chip caches in every consecutive generation 
 

of processors. Because larger cache size means slower cache, 

the trend will be toward increasing the length of cache 

hierarchy, that is, increasing the number of cache levels. A 

quick glance at die photos of recent processors should be 

sufficient to notice the reliance of architects on cache memory 

to put chip area to use. 

With the advent of multiple CPU cores on a chip, more and 

more sophisticated on-chip caches are appearing on the scene 

while the sizes are growing at the same time. At the far end of 

the complexity spectrum, IBM’s POWER4 architecture [16] 

has a 1.5MB L2 cache shared among its two processor cores 

and organized as three slices, the IBM’s POWER5 has L2 

cache of size 1.875MB with a 36MB off-chip L3 [13], and 

Intel Itanium [18] has a 3-level on-chip cache with combined 

capacity of 3MB. As the size and complexity of on-chip 

caches increase, the need to decrease miss rates gains 

additional significance, together with access time. 

The inclusion property, which dictates that the contents of a 

lower level cache be a subset of those of a higher level cache, 

is highly desired in a multiprocessor system primarily because 

it facilitates memory controller and processor design by 

limiting the effects of cache coherence messages to higher 

levels in the memory hierarchy. Overall performance is 

improved when the lower level caches are isolated from the 

effects of coherence checks and invalidations by the inclusion 

property. However, a cache design that enforces inclusion is 

inherently wasteful of space and bandwidth: Every cache line 

in lower levels is duplicated in the higher levels, and updates 

in lower levels trigger many more updates in other levels, 

wasting bandwidth. If the current trends of larger cache lines 

and more sophisticated caches continue, the inclusion property 

should be considered a prime candidate as part of a rethinking 

of multi-level cache design. 

The main advantages that can be gained by forcing non- 

inclusion are the following. 

 

• Context switches will be faster, because fewer messages 

will need to be moved up the hierarchy for the write backs 

and invalidations. 

• The effective size of the cache system increases because 

we are getting rid of data duplication. This is very 

important when two consecutive cache levels have large 

cache size, namely L2 and L3 caches, or when using 

Chip-multiprocessor and the aggregate level 1 caches are 

 



Dogo Rangsang Research Journal                                                 UGC Care Group I Journal 

ISSN : 2347-7180                                                          Vol-08 Issue-14 No. 01 February : 2021 

Page | 836                                                                                         Copyright @ 2021 Authors 

 

similar in size to level 2 cache, as in Piranha [3]. 

• Conflict misses in the second level cache are reduced. 

This is due to the fact that heavily referenced blocks are 

moved to the first level cache, leaving room for other 

blocks to come in the second level cache. This implicitly 

increases the associativity of the second level cache 

assuming that the non inclusion will be applied to level 

one and level 2 caches. 

• We can save in bandwidth, because fewer updates will 

need to be done when a block is dirty and is written back 

to memory. In which case, the block will not need to be 

written back to all the higher level caches in the hierarchy 

until reaching the memory. 

 

In this paper, we aim to gain insight into the effects of non- 

inclusive multi-level caches on performance. Several different 

designs where the caches up and down the hierarchy are 

mutually exclusive presented, their performance is compared 

to a basic cache architecture. 

We will also discuss potential solutions to cache coherence, 

when non-inclusive caches are used in multiprocessor systems. 

The rest of the paper is organized as follows. Section 2 

gives an overview of the related work on improving cache 

performance through caches that may violate inclusion 

property. The proposed model, called non-inclusive cache 

(NIC) is presented in Section 3. The NIC is evaluated experi- 

mentally in Section 4, followed by discussion of findings. 

Section 5 concludes and summarizes the paper, and outlines 

some of the future work we intend to do on this subject. 
 

2 Related Work 

Important issues in cache memory design and multi-level on-

chip caches have been studied in great detail. A comprehensive 

introduction to cache concepts can be found in 

[14] and multi-level cache design issues are introduced in [19]. 

The main idea and concept behind the inclusion properties 

for multi-level cache hierarchies was analyzed by Baer et al. in 

[2]. The possibility of relaxing the inclusion property has been 

identified in some details in several studies. The most 

extensive work has certainly been done within the context of 

prefetching, which implies the violation of inclusion property 

in many cases. An extensive survey of prefetching techniques 

is presented in [17]. Also non-inclusion has been used in 

Piranha [3], because the aggregate L1 capacity of all the 

processing elements of the chip multiprocessor is 1MB, and 

maintaining inclusion with the 1MB L2 available wastes space 

due to the duplicate data. However, in order to maintain intra- 

chip coherence, duplicate copies of L1 tags and state are kept 

in L2. An algorithm for exclusive cache hierarchies has been 

studied in [20], and showed some improvement, however, at 

the expense of the hardware complexity. 

As part of their work on tradeoffs inherent in on-chip multi- 

level cache design, Jouppi and Wilton [19] proposed an 

exclusive caching scheme similar to the swapping scheme we 

caching yielded performance improvements, they also 

suggested that maintaining the inclusion property between the 

sum of the first two levels of caches and a third level of off- 

chip caching can be a solution to the problem of simplifying 

the design of cache-coherent multiprocessors when exclusion 

is used. 

McFarling [8] described a multi-level cache design called 

dynamic exclusion which used tags to denote in which level in 

the hierarchy an instruction cache block will be kept. Using a 

finite state machine to identify instruction cache access 

patterns, this approach resulted in important reductions in the 

miss rate of direct-mapped instruction caches. 

Run-time cache bypassing methods [5, 6] propose using 

memory reference behavior to place the data in the cache 

hierarchy. This method uses sets of cache blocks called 

macroblocks and maintains a central table (MAT: Memory 

Address Table) to keep track of dynamically inferred usage 

patterns. This data is then used to move cache blocks in the 

hierarchy, violating the inclusion property at times. 

Another interesting idea, is partitioning L1 cache into 

mutually exclusive cache in order to overcome wire delay, is 

presented in [9].   Based on the results of previous work done 

on the subject, it is evident that the success of a particular non- 

inclusion strategy depends heavily on the method by which 

cache blocks are moved up and down the cache hierarchy. 

This is discussed in the next section. 
 

3 Non-Inclusive Cache (NIC) Model 

In a conventional cache memory system, when there is a 

cache miss at any level, the block is brought from the memory 

into all cache levels. If this cache block is rarely referenced 

again, then it has a high chance of displacing some more useful 

data from the cache, which consequently degrades the overall 

performance of the cache. This problem, of useful data being 

displaced by less useful ones, can be tackled in two different 

ways. The first method keeps track of the reference patterns, 

and the references that are less likely to be referenced again are 

not brought into the cache, and are brought directly to the 

processor. An example of this method is the run-time cache 

bypassing methods [5, 6]. The second method is relaxing the 

inclusion property. 

The inclusion property can be categorized into three main 

groups. The first one is the inclusive scheme. This is the 

conventional one where the lower level caches1 are subsets of 

the higher level ones. This has been considered the standard 

due to its simplicity. Cache hierarchy in almost all the current 

processors is inclusive. The second category is the partially 

inclusive cache hierarchy. In this case, some blocks may be 

included in both cache levels and some are not. The third 

category is the mutually exclusive cache hierarchy where a 

block cannot be present in two cache levels at the same time. 

The second category needs a lot of bookkeeping, does not 

make use of the whole cache area, and does not simplify 

coherence. Hence, we will concentrate in this paper on the 

analyzed. They found that a non-inclusive cache strategy is    

fairly effective in reducing level 2 conflict misses. In addition 

to finding that a combination of set associativity and exclusive 

1 Throughout this paper, when we mention lower level, we mean the 

level closer to the processor. 
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third category, which is the mutually exclusive cache. From 

that point on, when we mention non-inclusion, we will be 

talking about mutually exclusive caches. 

The duplication of data that results initially from the inclu- 

sion property can be avoided if we use a non-inclusive cache 

system. Non-inclusion relaxes the constraint of each cache 

level being a superset of the higher levels in the hierarchy. 

Hence, a block can exist in level 1 cache without necessarily 

existing in level 2 cache.   However, the blind application of 

this concept might not yield the expected performance. 

A crucial factor for the high performance of such a system is 

the algorithm by which blocks move up and down in the cache 

hierarchy. We have chosen to evaluate three different non- 

inclusive cache designs of varying sophistication. While we 

assumed that the memory hierarchy only contained two cache 

levels, the ideas presented in this paper can be extended to 

cache hierarchies with an arbitrary number of levels. The cache 

block sizes are assumed to be equal for all levels that violate 

inclusion, for simplicity but without loss of generality. 

Basic: This is the most basic scheme, and is used to test the 

validity of the basic concept of non-inclusion. In this scheme a 

miss in both cache levels brings the block into level 2 from the 

memory, and the required data is delivered to the processor. 

We have decided to opt for this scheme of moving the newly 

imported block to level 2 instead of level 1 in order not to 

pollute level 1 with a block that may be referenced only once. 

If the block is referenced for a second time, before it is 

replaced from level 2, then it means it has temporal locality, 

and thus, gets upgraded to level 1 cache. Therefore, the main 

difference from a traditional inclusive cache hierarchy is that 

the processor can accept data from either level 1 cache or level 

2 cache, but not both. If level 1 misses and level 2 hits, the 

block at level 2 migrates to level 1, and the displaced block 

from level 1 (if any), moves to level 2. Hence, level 2 cache 

acts as a victim cache [7] for level 1. We do not access L1 and 

L2 simultaneously, as this will not be power efficient. 

Autonomous Prefetching (AP): This scheme is similar to 

the basic scheme, except that when the block migrates from 

level 2 to level 1, the successor of that block is prefetched into 

the level 2 cache. This scheme can be developed further by 

using well-established techniques from the prefetching 

literature [17], like prefetching multiple successor blocks, at 

the cost of higher complexity. Figure 1 gives the state 

transition diagram of the basic and AP methods. 

It is to be noted that a hit in L1 does not trigger any actions 

or state transition in the basic or AP methods. 

Controlled Swapping (CS): Represents a further 

enhancement over the basic scheme. This scheme introduces a 

saturating counter for each block in both cache levels. Our 

counter concept borrows from the run-time cache bypassing 

concept [5, 6] to provide a simple means of tracking reference 

patterns. If the block hits at level 1, its counter is incremented. 

If the block hits at level 2, its counter is incremented and 

compared to the counter of the block at level 1, that would 

have been displaced if the block at level 2 migrates to level 1. 

If the counter at level 2 is higher than the one at level 1, the 

swapping is done in a similar fashion to the basic scheme, and 

both counters are reset. However, if the counter at level 1 is 

higher or equal, the block that hit at level 2 remains at level 2 

and the counter at level 1 is decremented. If both cache levels 

miss, the block is brought into level 2 and both its counter and 

the corresponding counter at level 1 are reset. 
 

Figure 1: Non-inclusion state diagram 

 

Figure 2 shows the main actions which are done by a non- 

inclusive cache. First, a block comes from the memory to the 

 

Figure 2: Main actions in non-inclusive cache system 
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L2 cache. This is better than bringing it directly to L1, 

because L1 is checked first and is the fastest, hence we need to 

be careful not to displace useful data from it.   If we find that 

the block is referenced several times, then the second action is 

the upgrade, where a block moves to a level closer to the 

processor. This happens when a block is referenced several 

times (twice in the basic system and the autonomous 

prefetching, and depending on the counters in the controlled 

swapping). When a block is upgraded, it may displace another 

block, depending on the associativity of the cache in the lower 

level. The upgrade and displace actions form a kind of swap- 

ping. The inclusive cache does not have this swapping action. 

It is to be noted that the block is also brought from memory 

in case of prefetching. Prefetching is more efficient in case of 

non-inclusive cache because it has more space for data, due to 

the elimination of duplicating data. 

 

 Hardware Cost 
 

The cost of having non-inclusive cache is not high. It is 

similar to the hardware needed for run-time memory 

management for example.   For the basic system, all we need 

are two multiplexers, and a buffer. The first one is at the 

vicinity of the processor, to choose data coming from L1 or 

L2. The second multiplexer is connecting the non-inclusive 

cache hierarchy, to the main memory or the higher level cache, 

similar to what is shown in Figure 3. In case of an L1 miss 

and L2 hit, the block at L2 migrates to L1, and the 

corresponding block at L1, if any, moves to L2. There are two 

moves here, from L1 to L2, and from L2 to L1. This swap 

operation needs a buffer in order to be accomplished. The 

displaced block from L1 is copied to the buffer, then the new 

block is brought from L2. Finally, the block at the buffer is 

copied to L2. 

For the AP system, the extra hardware needed, in addition to 

what is needed for the basic system, is the prefetching 

hardware.   The amount of hardware needed here depends on 

the type and technique of prefetching [17]. A comparison of 

the different hardware prefetching techniques and their cost is 

beyond the scope of this paper. However, the technique 

presented in this paper requires a small adder to calculate the 

address of the data to be prefetched. 
 

Figure 3: A suggested design of two level non-inclusive cache 

Finally, for the CS system, the extra hardware required, 

above the basic non-inclusive system, is the addition of a 

counter for each cache block at both L1 and L2 cache. From 

our preliminary experiments, we found that a two-bit counter 

is enough for efficient working. Moreover, a comparator is 

needed to compare the two counters, and trigger block 

swapping, if needed. 

Taking into account the large cache sizes, the hardware 

requirement for a non-inclusive cache is not high. 

 

 NIC in Multiprocessor Systems 

 

The main reason the inclusive caches have gained such wide 

acceptance is its simplicity in handling coherence in case of 

multiprocessor systems. However, non-inclusive caches can 

also handle coherence with easiness. There are many solutions 

for handling coherence using non-inclusive caches. 

 

• With systems that have three levels of caches or more, 

such as Intel Itanium [18], we can have non-inclusion 

between L1 and L2, and inclusion with L3 or the level 

nearest to the system bus, as shown in Figure 4. 

• A technique used in Piranha [4] is to duplicate the tags of 

L1 in L2 cache, or the cache nearest to the bus. 

• Another way of handling coherence in non-inclusive 

environment is to have a separate table with the tags of all 

the non-inclusive caches. This table is used for 

invalidation, using directory-based techniques instead of 

snoopy. 

 

However, evaluating these techniques is out of the scope of 

this paper and will not be considered further. 
 

Figure 4: L1-L2 non-inclusive and L3 inclusive 

 

4 Experimental Evaluation 

 

In this section we present a detailed quantitative evaluation 

of the presented technique. Such an evaluation is important to 
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study the performance gain that can be obtained from the NIC 

model, and to see how efficient it is with standard benchmarks. 

 

 Experimental Methodology and Setup 

 

For our microarchitectural simulations, we used a modified 

version of the out-of-order processor simulator of the 

Simplescalar 3.0 tool set [4], for the PISA (portable ISA) 

instruction set. Table 1 shows the parameters we used for the 

simulation. Although the table shows the usage of a bimodal 

branch predictor, we have obtained similar results by using a 

hybrid branch predictor of two-level and bimodal. However, 

due to space as well as to avoid redundancy, we have not 

included those results. Cache latencies have been obtained 

using CACTI [12] to get the access latency. We used integer 

and floating point benchmarks from the SPEC2000 suite with 

reference inputs. The benchmarks have been compiled using 

the Simplescalar PISA gcc cross-compiler with the 

optimizations specified in the makefile provided with the suite. 

Each benchmark was simulated for 500M instructions after 

skipping the startup phase as described in [10]. 

 Miss Rates. The first set of experiments involves the 

miss rate at level 1 cache.   We expected a conventional cache 

to be slightly better than the non-inclusive cache because in 

case of cache misses, the blocks are brought into level 2 cache 

first in the non-inclusive cache, not to level 1 directly as the 

case would be in a conventional cache. Therefore, a future 

access to the same block will still incur a level 1 cache miss 

penalty. However, this scheme has the advantage of avoiding 

cache pollution due to rarely referenced blocks. The results 

are shown in Figure 5. The conventional cache design has 

slightly lower miss rate. The second best scheme is the 

autonomous prefetching. This because in AP the prefetching 

is not causing cache pollution and is offsetting the 

disadvantage of moving the block to L2 first. The only 

exception is twolf. This is due to the fact that many references 

are used one or two times, hence they cause cache pollution, 

which is removed by the basic non-inclusion scheme. The 

simple prefetching done in AP, does not perform well for 

twolf, hence the miss rate is higher. The controlled swapping 

scheme performs the worst, as the block movements to level 1 

are delayed further due to the counters. CS is used to see 
 

Table 1: Simplescalar simulator parameters 

Parameter Value 

Decode Width 4 

Issue width 4 

Commit width 4 

Instruction Fetch Queue Size 4 

Branch Predictor Bimodal with 2048 table size 

Instruction Fetch Queue Size 4 

Load/Store Queue Size 4 

BTB Configuration 512 sets, associativity 4 

Return Address Stack Size 8 

L1 – Icache 32KB, 4-way set assoc., LRU, 32 byte line size, 1 cycle access lat. 

L2 - Icache 256KB, 4-way set assoc., LRU 64 byte line size, 6 cycle access lat. 

L1 – Dcache 64KB, 2-way set assoc., LRU, 32 byte line size, 1 cycle access lat. 

L2 - Dcache 512KB, 4-way set assoc., LRU 32 byte line size, 8 cycle access lat. 

Memory Latency 100 cycles for the first chunk, 2 cycles afterwards 

Memory Bus Width (in bytes) 8 

ALUs available 4 integer ALUs (1 integer multiply/divide) 
4 floating point ALUs ( 1 floating pint multiply/divide) 

 

 
In [10] the authors have made a profiling study about the 

characteristics of each benchmark (such as percentage of each 

type of instructions, basic blocks profiling, etc). This profiling 

is simulation infrastructure independent, a characteristic of the 

benchmark. Therefore, we used their suggested number of 

instructions to skip. For the controlled swapping method, we 

used 2-bit saturating counters for each block. Table 2 shows 

the total number of loads and stores committed.   We present 

the results of data cache only. 

 

 Experiments and Discussion 

 

In this section we present and analyze our simulation results. 

 

Table 2: Total number of loads and stores committed 

Integer 

Bench. 

# of 

Ref. 

FP 

BENCH. 

# of 

Ref. 

bzip2 235864202 ammp 255247899 

gcc 389188032 applu 127876490 

gzip 150676316 apsi 187965389 

mcf 282954558 art 212728035 

parser 260534355 equake 161264237 

perl 248595729 mesa 249097078 

twolf 254806912 swim 136862642 

vortex 275013769 wupwise 175958198 

vpr 214718042   
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whether we can filter more unwanted references. 

The miss rates for the level 2 cache are shown in Figure 6. 

In contrast to level 1, the conventional cache has the higher 

miss rate in this case, and by a large margin. This is primarily 

due to the duplication of data: the extra data included in the 

level 2 cache in case of the inclusive scheme is much smaller 

than the extra data in the non-inclusive schemes. 

Furthermore, the conflict miss is reduced in L2 cache due to 

the fact that the highly referenced blocks move to L1, leaving 

room to more blocks to come from memory. AP is performing 

the best in L2. Because of the fact that the larger size of L2 

cache, coupled with its conflict miss reduction, results in much 

less pollution caused by the simple prefetching scheme used. 

The effect of non-inclusion is very apparent in the SpecFP 

results, where the conventional cache has very high L2 miss 

rate. 

 

 Instruction per Cycle. Figure 7 shows the instruc- 

tions committed per cycle. All the schemes give comparable 

performance. On average, autonomous prefetching slightly 

outperforms the other schemes. The reason for the comparable 

IPC, although L2 miss rate is lower for the non-inclusive 

hierarchy, is due to the data that are referenced once or twice. 

The data that are referenced once, cause cache miss for both 

 

 

  

 

Figure 5: Level 1 data cache miss rate 

 

 
Figure 6: Level 2 data cache miss rate 

 
 

 
Figure 7: Instructions committed per cycle 
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inclusive and non-inclusive caches. The data that are 

referenced twice, will miss in the first access, and will hit in 

the second. However, the access time for the second time is 

lower in the inclusive cache, due to the fact that L1 responds, 

while in the non-inclusive cache, L2 responds, after L1 misses. 

Only when the data is referenced for the second time, in the 

non-inclusive hierarchy, it is upgraded to L1, after which the 

response will be higher. 

We tried to enhance the autonomous prefetching even 

further by controlling the prefetching.   The underlying idea 

was that some prefetched data might not be needed and it 

might displace useful data. The controlled prefetching 

attempts to prevent this by adding a reference bit to each block 

at level 2 cache. When a block is displaced from level 1 and 

inserted into level 2, it has its reference bit set. We do not 

prefetch the successor of the block which migrated to level 1 

unless the reference bit of the block that will be displaced from 

level 2 cache due to this prefetch is not set. If this reference bit 

is set, no prefetching takes place at this time and the bit is 

reset. Despite these measures, we found that the performance 

of the controlled prefetching scheme was very close to that of 

the basic scheme.   An explanation of this finding lies in the 

fact that the prefetched data is more often useful than not due 

to the locality of reference of most applications of the 

Spec2000. Therefore, we do not present results for the 

controlled prefetching in this paper. It is worth mentioning 

here that if both cache levels are accessed simultaneously, an 

improvement is expected in IPC for the non-inclusive cache 

more than the conventional cache. This is due mainly to the 

fact that in the non-inclusive scheme we are accessing new 

data by accessing both caches, not duplicated data with some 

new data like the conventional scheme. 

However, for power issues, we decided to access them in 

sequence, as done in any conventional cache. 

 

 Prefetching in Inclusive vs Non-Inclusive 

Hierarchy. In order to assess the effect of prefetching on an 

inclusive versus non-inclusive cache, and also to see whether 

the low miss rate of AP is due to the non-inclusion or the 

prefetching, in this section we compare the L2 miss rate as 

well as the IPC of an inclusive traditional hierarchy with 

prefetching and the AP scheme. Both of them are using the 

same simple prefetching technique that we have described 

earlier. AP is a non-inclusive cache hierarchy, and the 

traditional scheme is in inclusive hierarchy. 

As we can see from Figure 8, the AP has much lower L2 

miss rate. This is due to the fact that a blind prefetching can 

easily pollute the cache. When the cache size is smaller, it 

becomes even more sensitive to the pollution. Since a non- 

inclusive cache is in reality of bigger size than the inclusive 

one, due to the elimination of data replication, the pollution 

has less effect on the non-inclusive cache. This is also 

reflected in the IPC, shown in Figure 9, where AP has higher 

IPC than a traditional prefetching scheme. Prefetching did not 

help some benchmarks, such as ammp, art, and mcf, in the 

inclusive scheme. On the contrary, prefetching has caused 

pollution to the caches for those benchmarks, negatively 

affecting the performance. As we have seen, the pollution 

caused by prefetching has offset the lower access time of the 

inclusive cache hierarchy, and made it worse than the non- 

inclusive one. 

 

 Bandwidth Utilization. Besides cache performance 

and its effect on overall system performance, it is important to 

study the bandwidth consumed in the memory hierarchy. This 

means the amount of data moving between L1, L2, and 

memory. The importance of bandwidth is related to the power 

dissipated from wires, which constitute a significant portion of 

the total power dissipated by the memory system. Moreover, 

high bandwidth exposes wire delay and can affect 

performance. In order to be technology independent in our 

measurements, we calculated the bandwidth as bytes per cycle. 

Figure 10 shows the bandwidth consumed by the schemes. 

The first thing we notice is that AP is consuming more 

bandwidth than the other schemes. This is expected because of 

the extra traffic caused by the prefetching. CS scheme is 

performing the best together with the conventional system. 

We found that most of the bandwidth consumed in the non- 

inclusion basic scheme as well as the CS scheme is between 

L1 and L2 caches, due to the upgrade of blocks from L1 to 

L2or vice versa. Most of the bandwidth consumed by the 

conventional scheme is from L2 to main memory, hence 

causing congestion in the system bus, harming the overall 

system performance. The system bus is usually used by the 

 

 

  
 

Figure 8: Level 2 data cache miss rate of AP and inclusive prefetch 
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processor, as well as as devices such as DMA or graphics 

adapter. However, since in our simulations we did not model 

bus congestion, the aforementioned facts about the bandwidth 

have not affected the IPC. 

 

 Power Implication. In this section we discuss the 

power implication of the proposed schemes at level 1 and level 

2 data caches because, in this paper, we apply non-inclusion in 

the data cache hierarchy only. 

Power consumption is now a pivotal factor in any system. 

For portable devices, it is important because of the battery life. 

For desktop machines, it is important because of the packaging 

cost. Caches usually consume a significant amount of power. 

Power consumption can be divided into dynamic power and 

static power. Dynamic power is due to the switching activity 

[15], and many methods have been proposed to deal with it [1]. 

The other component of power consumption is static power 

due to current leakage. This type of power consumption is 

becoming increasingly more significant, and the 

semiconductor industry association (SIA) predicts that it will 

reach 50 percent of the power consumption in the very near 

future [11], in the current sub-micron era. 

For dynamic power consumption we used CACTI to get 

total power dissipation per cache. Then, in order to get a 

realistic idea about the behavior of each scheme in terms of 

power and energy, we calculated the number of bytes per nJ. 

This calculation is done using the following equation. 

 

(effective cache hierarchy size)/ (average energy consumed). 

 

The effective cache size is the amount of unique data. In cache 

of the conventional scheme, this size is the size of the level 2 

cache, because level 1 is a subset of level 2. In case of non- 

inclusive cache, it is the sum of both the size of level 1 and 

level 2 caches. The effective size of the three non-inclusive 

schemes is the same. We calculated the average energy 

consumed as follows. 

 

(energy consumed at L1) + (miss rate of L12)*(energy 

consumed at L2). 

 

The logic behind the above equation is that level 1 will be 

accessed anyway, but level 2 will be accessed only if L1 

misses. Table 3 shows the results obtained. As we can see 

from the table, gcc, gzip, perl, twolf, apsi, and swim are - 

cheaper, in terms of energy consumed, when using a non 

 

 
 

  
 

Figure 9: Instructions committed per cycle of AP and inclusive prefetch 

 

 
 

 
Figure 10: Bandwidth used in memory hierarchy (bytes/cycle) including prefetching 

 

2 Unless statead otherwise, L1 always means data cache level 1. 
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inclusive cache. On the other hand, some benchmarks, such as 

vpr, equake, and art do not show big gain or loss when using 

non-inclusion or inclusion. 

Therefore, the performance of non-inclusive cache, in terms 

of energy, is application dependent.   However, we can see 

from the above equation that as the size of caches at each level 

increases, which is very likely due to the advances in 

technology, the benefit of non-inclusive cache, in terms of 

energy, becomes more apparent. 

Leakage current is the result of inactivity. That is, if a block 

in the cache is not modified for a long time, current will start 

leaking, consuming static power. The working of non- 

inclusive cache significantly reduces leakage current. This is 

because of the modifications done to each cache frame due to 

block upgrade. The way the non-inclusive cache works 

involves more cache block movements than the traditional 

cache. This is due mainly to block upgrade from L1 to L2, and 

the swapping. Due to this movement, cache frames receive 

more modifications, than traditional caches, and this reduces 

the leakage current. 

Finally, as we have seen from Section 3.1, the extra 

hardware needed for the functionality of the non-inclusive 

cache is negligible relative to the big cache size. 

 

Table 3: Bytes per nJ for different configurations 
Bench. Conv. Basic AP CS 

bzip2 178864.63 165755.4 180683.74 105018.16 

gcc 20987.3 23555.27 23573.72 15612.07 

gzip 174205.21 183998 195980.86 101820.19 

mcf 25080.27 19700.2 22481.82 14590.21 

parser 203338.5 171420.6 195980.86 89151.15 

perl 614208.06 690984.07 690984.07 690984.07 

twolf 82930.72 953790.43 71386.52 43704.91 

vortex 312671.76 265017.97 308485.36 157102.07 

vpr 127650.95 114183.06 117757.55 71556.27 

ammp 29902.58 19234.31 19258.93 17449.79 

applu 54864.8 32584.08 37779.2 20817.71 

apsi 24108.3 24817.98 24962.08 24675.52 

art 26977.32 25276.58 26178.1 23281.91 

equake 379149.55 336043.76 347691.58 183998 

mesa 539835.26 473526.01 583752.97 290610.96 

swim 875564.46 896934.31 985010.02 707223.02 

wupwise 464794.33 343720.28 522893.62 256000 

 
5 Conclusions 

 

In this paper we show that non-inclusive strategies can be 

particularly effective in reducing cache misses at level 2 in our 

2-level on-chip cache scenarios. The IPC numbers are 

comparable to those obtained with a conventional cache 

system, but the access time is expected to be lower for the non- 

inclusive cache strategy due to the lower miss rates at level 2 

and the comparable miss rates at level 1 cache. We presented 

several schemes for the non-inclusive cache and showed that 

non inclusion results in reducing L2 miss rate by 28 percent for 

specINT and 40 percent for specFP. 

We believe that the results we obtained in this study support 

our belief that more performance can be obtained by using 

more sophisticated non-inclusive strategies. In our future 

work, we wish to explore methods to alleviate the adverse 

effect of high level 1 miss rates of non-inclusive caches so that 

the performance gain obtained by decreasing the miss rates at 

higher levels can be reflected better in overall performance. 

Furthermore, we intend to develop mechanisms to allow the 

usage of non-inclusive caches in multiprocessor systems, and 

study the interaction between cache coherence protocols and 

non-inclusive caches in detail. 
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