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Hyperspectral imaging technology is used to identify damage 
in pears. 
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Abstract- Crown pears are a significant crop for the economy, but the various levels of damage have a negative impact on both 

their quality and economy. Sorting crown pears with various degrees of damage is necessary to improve the overall quality of 

crown pears. Traditional detection techniques do have significant drawbacks, though, such limited efficiency and high 

inaccuracy. In order to distinguish between sound and the three types of damage (levels I, II, and III, respectively) to crown 

pears, the hyper spectral technology was employed in this study. Reflectance (R) spectra were combined with absorbance (A) 

and Kubelka-Munk (K-M) spectra to increase the model's discriminatory accuracy. The three spectra were processed, and two 

models—the support vector machine (SVM) model and the partial least squares discriminate analysis (PLS-DA) model—were 

developed to separate the crown pears with various degrees of damage. The discriminate model's results demonstrate that the 

SVM based on R, A, and K-M spectra has a higher discrimination accuracy than PLS-DA of those spectra; the A-RAW-SVM 

model has the best discrimination performance, with an overall discrimination accuracy of 100% for the test and 98.98% for 

calibration sets, respectively. Finally, the characteristic wavelengths were extracted from the spectra using the competitive 

adaptive reweighted sampling (CARS) and the uninformative variables elimination (UVE), and the SVM models were 

constructed using the filtered R, A, and K-M. The A-RAW-CARS-SVM model has the best capacity to discriminate, according 

to their results, and its test and calibration sets' discriminating accuracies are 96.88% and 100%, respectively. The outcomes 

demonstrate that the SVM model based on a spectrum is the best at differentiating between the various degrees of damage in 

crown pears. This work offers an experimental and theoretical foundation for the use of hyper spectral imaging to identify 

crown pear damage. 
 

1. Introduction 

Crown pears are a significant crop for the economy and 

are commonly cultivated in subtropical areas. It is well-

liked due of its thin, crisp, sweet, and juicy skin [1]. 

Owing to their thin skin, crown pears are susceptible to 

mechanical damage during picking, shipping, and storage 

after ripening. Depending on the severity of the damage, 

these three types of damage may be distinguished: surface 

damage, epidermal abrasion, and impact damage [2]. 

Damaged crown pears quickly rot and degrade due to the 

simple growth of germs, and they also spread infection to 

healthy crown pears, reducing their shelf life [3].The 

crown pears after damage can be sorted and taken different 

treatment according to the different levels of damage to 

obtain higher economic benefits. The crown pears with mild 

damage can still be eaten normally in the early stage. The 

crown pears with severe damage can be con- sidered to 

remove the damaged part after making processed food. At 

present, the damaged crown pears mainly rely on manual 

sorting. This sorting method has a large error and low 

efficiency. Therefore, it is necessary to explore a precise, 

nondestructive, and efficient inspection method to realize 

the sorting of crown pears with diferent damaged levels. 

In order to discriminate the diferent levels of damage of 

crown pears more efficiently, researchers have proposed 

various detection techniques to investigate. Kim et al. [4] 

used infrared-locked thermography to assess the damage of 

pears by feeding periodic thermal energy to the pear, and 

then, thermal radiation from the pear was collected to 

 

 

identify the size of the damage and the depth of the damage. 

The results showed that the phase information generated by 

thermography could be used to detect the damaged fruit. 

However, thermal radiation can cause some damage to the 

quality of fruit. Luo et al. [5] used spatial frequency domain 

imaging (SFDI) to detect diferent levels of damage (sound, 

slight, and severe damage) of pears. The results showed that 

the accuracy of SFDI was 100% at 527 nm; this demonstrated 

that the SFDI technique could be used to detect the damage 

level of fruit. However, SFDI is strongly influenced by the 

color of the peel, and the diference in peel color poses a great 

difficulty in characterizing the optical properties. Zhou et al. 

[6] used optical coherence tomography (OCT) to detect 

the damage of pears. The results indicated that the 

OCTcould be used for damage detection in pears, but the 

resolution and detection depth of OCT technique needed 

to be improved. The insignificant diference between the 

early damaged and sound areas of crown pears increases 

the difficulty of sorting by visual techniques [7]. To 

overcome the limitations of the above detection 

techniques, the hyperspectral technique is proposed to 

detect the damaged level of pears. The hyper- spectral 

technique is seen as an emerging nondestructive testing 

technique, and it provides a large amount of in- 

formation about the characteristics of sample [8].
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Many scholars have studied the damage of fruit using the 

hyperspectral technique and have obtained many satisfac- 

tory results. Li et al. [9] used hyperspectral to achieve the 

detection of early damage in peaches. They compared the 

ability of short-wave NIR and long-wave NIR to distinguish 

bruises, and it concluded that the short-wave NIR had better 

discriminatory ability with an accuracy of 96.5% for bruised 

peaches. Tan et al. [10] used hyperspectral to detect early 

damage and determine the damaged level of apples with the 

accuracy of 97.5%. Sun et al. [11] used hyperspectral to 

identify diferent levels of damage in tomatoes with the 

accuracy of 90.93%. The above studies show the feasibility of 

using hyperspectral detection damage of fruit. Most of the 

studies based on hyperspectral detection quality of fruit used 

the reflectance spectra to establish analytical models [12]. 
The physical and chemical properties of fruit may 
changeinspection, and the samples with equatorial 
diameter be- tween 70 and 80 mm and weight between 250 
and 280 g were stored at the room temperature of 25°C. 

 
 Quantitative Damage Experiments. The samples sub- 

jected to impact damage experiments using the 

pendulum device are shown in Figure 1(a). The 

pendulum consists of a pendulum arm and an impact 

surface, and the sample is fixed at the end of the 

pendulum arm. The pendulum arm is released by 

diferent angles, which can cause the diferent levels of 

damage samples. The samples caused by 30°, 40°, and 50° 

release are defined as level I, II, and III damage, 

respectively. Samples with diferent levels of damage 

are shown in Figure 1(b). The samples are divided into 

4 groups, one of which served as the control group, and 

the remaining 3 groups are subjected to 3 levels of 

impact damage experiments. 64 samples each of sound, I, 

II, and III damage are obtained by the impact damage 

experiments. 

 
 Acquisition of Hyperspectral Images. Images of all 

samples are acquired by the Gaia Sorter hyperspectral 

instrument. The composition of the hyperspectral 

image acquisition system is shown in Figure 2, and the 

in- strument is manufactured by Dualix Spectral 

Imaging Ltd. Crown pear samples are sequentially 

placed on the transport platform, and the spectral 

acquisition is per- formed sequentially to generate a 

3D data body con- taining image information and 

spectral information. The hyperspectral acquisition   

instrument   is   preheated   for 30 min before 

acquisition to reduce the acquisition error caused by 

the baseline drift. 

 
 Spectral Calibration. The dark current and uneven 

distribution of light sources exist in the hyperspectral 

instrument when the acquisition is carried out 

directly, and they may cause large experimental errors, 

so the spectral correction process is carried out by 

 

  
( ) 

 

 after being damaged, and these physical and chemical properties 
can be connected with the spectra [13]. The combination of 

Ryperspectral and chemometrics can be used to detect the 
change in the content of compounds in fruits [14]. However, 

there are a lot of background information, noise information, 

and useless information in the spectra when judging based on 

the reflectance spectra directly obtained by the spectral in- 

strument, those lead to the low-discrimination accuracy 

(90.93%) of fruit with various degrees of damage. Therefore, the 

reflectance (R) spectra, absorbance (A) spectra, and Kubel- 

ka–Munk (K-M) spectra combining with chemometrics was 

proposed to identify the various degrees of damage of fruit to 

improve the identification accuracy. 

 

2. Materials and Methods 

 Crown Pear Sample. The crown pear samples used 

for the experiment were obtained from local orchards in 

Jiangxi. Samples without external damage were 

selected by visual 

where R is the calibrated sample image acquisition data, Ry is 

the all-black image acquisition data, Rz is the all-white image 

acquisition data, and R0 is the original sample image 

acquisition data. 

 
 Spectral Extraction. Spectral extraction is performed 
on the acquired hyperspectral images to obtain the 
spectral in- formation that it can be used to characterize 
the sample. The VIS-NIR spectra cover the wavelength 

range of 397.5∼1014.0 nm with a resolution of 3.5 nm. 
The region of interest (ROI) is 

selected in the equatorial region of sound samples and damaged 

samples to reduce the uneven degree of light. The average value 

of the reflectance within the ROI is calculated as the reflectance 

spectra (R of this sample. The R spectra are calculated by (2) and 

(3) to obtain the absorbance (A) spectra and Kubelka–Munk (K- 

M) spectra, respectively. 

1 
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FIgurE 1: Pendulum quantitative damage of the experimental setup: (a) pendulum quantitative damage device, schematic; (b) sound and 
diferent levels of damage of the crown pear samples. 
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FIgurE 2: Schematic diagram of a hyperspectral acquisition system. 

 

A � −lgR, (2) the influence of anomalous information and retain valid 

information to improve the applicability and robustness of 
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the discrimination model. The pretreatment methods of 

Gaussian filter (GF), standard normal variation (SNV), 

Savitzky–Golay derivative (SGD), multiplicative scatter 

correction (MSC), and correlation optimized warping 

 Spectral Data Pretreatment. The R, A, and K-M spectral 

data may contain information about anomalies caused 

by some unrelated characteristics of the sample in 

addition to the information about the sample being 

tested. Therefore, the raw data need to be processed to 

eliminate or attenuate 

(COW) are commonly used. 

 
 Characteristic Wavelength Selection. There are 

multiple correlations between R, A, and K-M spectra at 

diferent wavelengths, resulting in redundant 

information in the 
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spectra. This redundant information reduces the discrimi- 

nation speed and accuracy of the model, and therefore, the 

redundant information needs to be eliminated [15]. In 

practice, a good performing classification model requires not 

only high discrimination accuracy but also has fast dis- 

crimination speed; therefore, the original spectra can be 

downscaled by the competitive adaptive reweighted sam- 

pling (CARS) and the uninformative variables elimination 

(UVE) [16]. CARS is a sampling method for wavelength 

selection based on regression coefficients, and UVE is 

a sampling method for rejecting uninformative variables 

based on the value of the stability of the model variables. 

These two methods are widely used for the selection of 

characteristic wavelengths of spectral data [17]. 

 
 Model Building. The Kennard–Stone (KS) 

algorithm achieves stratified sampling by uniformly 

selecting samples in the characteristic space based on 

the Euclidean distance between variables, reducing the 

impact on the final results due to the introduction of 

additional bias in the partitioning process [18]. The KS 

algorithm is used to divide the spectral data of the 

samples into two mutually exclusive calibration sets 

and test set (calibration set: test set 3 : 1). The partial 

least squares discriminant analysis (PLS-DA) and the 

sup- port vector machine (SVM) models are based on 

R, A, and K-M spectra, respectively. The PLS-DA is 

used to find a linear regression model by projecting 

the predictor and observed variables into a new space 

[19]. SVM can be used to perform nonlinear 

classification by kernel methods with a decision 

boundary of the maximum margin hyperplane solved 

for the learned samples [20]. The precision and ac- 

curacy can be used to evaluate the performance of the 

classification model. The precision based on the 

confusion matrix is usually evaluated by the F1 value, 

which is a har- monic mean based on the accuracy and 

recall. The closer the F1 value is closer to 1, the higher 

the precision of the model [21]. The F1 value is 

calculated by the following equation: 

  

   where TP is the true case, FN is the false counter case, and 

FP is the false positive case. 

The F1 value is applicable to the binary classification 

model, for the evaluation of the accuracy rate of the mul- 

ticlassification model needs to calculate the F1 value of each 

category, and the average of it is taken to get the macro-F 

value of the model, and the macro-F value is calculated by 

 

plotted. The mean values of the damage levels of the R 

spectra are shown in Figure 3(a), with the sound samples 

exhibiting the highest spectral reflectance, followed by the 

level I damage and level II damage and finally the level III 

damage. There is a significant decrease in the spectral re- 

flectance of the damaged crown pear, and the reason for the 

spectral diference is mainly due to the rupture of the cell 

membrane of the crown pear after damage, which led to 

water loss and easy oxidation, which is consistent with the 

results of research on apple damage [22]. Figures 3(b) and 

3(c) show that the curve characteristics of the A spectral and 

K-M spectral are diferent, and the A spectral and K-M 

spectral curves show that the spectral values of level III 

damage, level I damage, level II damage, and sound samples 

become lower in sequence. The diferent trends and char- 

acteristics presented by the three spectral curves are the basis 

for model discrimination. 

 Spectral Pretreatment. The spectra are usually 

pretreated before building a discriminant model. The 

purpose of pretreatment is to extract valid information 

and eliminate background information and noise. The 

R, A, and K-M spectra of crown pears were pretreated 

based on GF, MSC, SNV, COW, and SGD, and the 

changes in the spectra after pretreatment were 

described as an example of reflectance spectra. Figure 

4 shows that the spectral characteristics of the R spectra 

change significantly after diferent pretreatments, and 

these changes are more pronounced at the wave peaks 

and troughs. Gaussian filtering is calculated by 

Gaussian function to reduce the self-noise of raw 

spectra. MSC and SNV methods are mainly used to 

eliminate the scattering efect from the inhomogeneous 

distribution of particles and particle size. COW aligns 

two signals by segmenting the spectra with linear 

stretching and compression. SGD can be used to 

efectively eliminate the baseline and other back- 

ground interference by performing 1st derivative on the 

spectral curve. 

 Model Building and Analysis. The accuracy of the 

dis- crimination results of PLS-DA based on R spectra, 

A spectra, and K-M spectra is shown in Table 1. The 

best model based on the R spectra is the model 

pretreated by SNV with the discrimination accuracies 

of 64.06% and 65.63% for the test and calibration sets. 

The best model based on A spectra is the model 

pretreated by COW with discrimination accuracies of 

60.94% and 54.17% for the test and calibration sets. The 

best model based on K-M spectra is the model based 

on RAW 
 

3. Results and Discussion 

 Spectral Analysis of Crown Pear. The R, A, and K-M 

spectral data for sound and samples with diferent levels of 

damage were averaged, and their spectral curves were
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the test and calibration sets, respectively. From the 

dis- criminant results, it is clear that the K-M spectra 

exhibits the best modeling performance   in   the   

PLS-DA discriminant model. 
The accuracy of the discrimination results of the SVM 

model based on R spectra, A spectra, and K-M spectra is 

shown in Table 2. The best model based on R spectra is 

the model based on RAW with discrimination accuracy of 

96.88% and 98.96% for the test and calibration sets. The 

best model based on A spectra is the model based on 

RAW with 
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FIgurE 3: Raw spectral curves of(a) R, (b) A and, (c) K-M. 

 

discrimination accuracies of 100% and 98.98% for the test 

and calibration sets. The best model based on K-M spectra is 

the model based on COW with discrimination accuracy of 

95.31% and 98.44% for the test and calibration sets. From the 

discriminant results, it is clear that the SVM model has the 

best discriminant performance based on A spectra. 

From the discriminant results in Tables 1 and 2, it is clear 

that the performance of the SVM model by GF is best among 

the models based on R spectra. Among the models based on 

the A spectra, the SVM model when the A spectra is not 

pretreated has the best performance. Among the models 

based on K-M spectra, the SVM model by COW pre- 

treatment has the best performance. The discrimination 

results of the models show that the SVM model has a higher 

discrimination accuracy than the PLS-DA model. The reason 

for the poor discriminatory ability of PLS-DA may be due to 

the fact that the spectral information does not have a linear 

correlation with the level of cellular water loss of the sample 

under test reducing the predictive ability. In contrast, SVM is 

a nonlinear classification by the kernel method, so it obtains 

high discrimination accuracy in the detection diferent 

damage levels of crown pears. Cao et al. [23] used hyper- 

spectral combined with SVM and PLS models to detect the 

damage level of pears, and the results showed that the SVM 

model was more accurate in predicting the damage level of 

pears. The results of the experimental discrimination show 

that SVM can be used to efectively discriminate the damage 

level of pears. 

The discriminant results of the optimal models in R, A, 

and K-M spectra are analyzed separately. The optimal model 

based on R spectra is R-GF-SVM, and the confusion matrix 

of the model discrimination results is shown in Figure 5(a). 2 

level II damage samples in the test set are misclassified as 

level I damage sample: 1 sound sample in the calibration set 
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FIgurE 4: Curves of raw and pretreated R spectra. 

 

 
 

TaBlE 1: Discriminant accuracy of the PLS-DA model based on R, A, and K-M spectra. 

Spectra Pretreatment 
Accuracy (%), test set/calibration set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is misclassified as level I damage sample, and 1 level II 

damage sample is misclassified as level III damage sample. 

The optimal model based on A spectra is A-RAW-SVM, and 

the confusion matrix of model discrimination results is 

shown in Figure 5(b). There are no misclassified samples in 

the test set; 1 sound sample in the calibration set is mis- 

classified as level II damage sample, and 1 level II damage 

sample is misclassified as level III damage sample. The 

optimal model based on K-M spectra is K-M-COW-SVM, 

and the confusion matrix of the model discrimination results 

is shown in Figure 5(c). 2 level I damage samples in the test 

set are misclassified as level II damage sample, and 1 level II 

 

damage sample is misclassified as 1 sound sample. 2 level I 

damage samples in the calibration set are misclassified as 

level II damage samples, and 1 level III damage sample is 

misclassified as level II damage sample. 

The precision of the model discrimination is calculated, 

and the discrimination results are shown in Figure 5. The 

accuracy rates of the R-GF-SVM model, A-RAW-SVM 

model, and K-M-COW-SVM model are calculated by (4), 

and the results are shown in Table 3. 

The macro-F value of the R-GF-SVM model, A- RAW-

SVM model, and A-RAW-SVM is 0.9844, 0.9922, and 

0.9767, respectively. The closer the macro-F value is to 1, the 

R
ef

le
ct

an
ce

 

Sound I II III Total 

RAW 50.00/66.67 87.50/62.5 31.25/60.42 68.75/70.83 63.33/65.10 

GF 50.00/66.67 87.50/62.5 31.25/60.42 68.75/70.83 63.33/65.10 

R 
SNV 62.50/75 87.50/64.58 43.75/60.42 62.50/62.5 64.06/65.63 

MSC 62.50/75 87.50/64.58 43.75/60.42 62.50/62.5 64.06/65.63 

COW 43.75/66.67 100/70.83 37.5/85.42 68.75/77.08 62.5/75 

SGD 50/72.92 81.25/81.25 43.75/70.83 62.5/77.08 59.38/74.48 

RAW 43.75/68.75 87.50/75 37.5/79.17 62.50/72.92 57.81/73.96 

GF 50.00/68.75 93.75/75 37.5/79.17 62.50/70.83 57.81/73.44 

A 
SNV 68.75/72.92 68.75/68.75 37.5/60.42 56.25/62.5 57.81/66.15 

MSC 68.75/72.92 68.75/68.75 37.5/60.42 56.25/62.5 57.81/66.15 

COW 62.5/62.5 35.42/93.75 18.75/54.17 68.75/64.58 60.94/54.17 

SGD 50/79.17 62.5/39.58 25/43.75 62.5/54.17 50/48.96 

RAW 50/75 87.5/77.08 50/81.25 43.75/81.25 64.06/75.52 

GF 50/70.83 87.5/77.08 31.25/81.25 56.25/81.25 56.25/74.48 

K-M 
SNV 43.75/81.25 75/70.83 37.5/62.5 56.25/60.42 53.13/68.75 

MSC 43.75/79.17 81.25/68.75 37.5/58.33 56.25/62.5 52.08/67.19 

COW 43.75/75 93.75/81.25 43.75/62.5 68.75/68.75 62.5/71.88 

SGD 37.5/58.33 93.75/64.58 31.25/54.17 50/56.25 53.13/58.33 
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TaBlE 2: Discriminant accuracy of SVM models based on R, A, and K-M spectra. 

Spectra Pretreatment 
Accuracy (%), test set/calibration set 
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FIgurE 5: Confusion matrix of the discriminant results of the optimal SVM model based on R, A, and K-M spectra. Confusion matrix of 
discriminant results of the (a) R-GF-SVM model, (b) A-RAW-SVM model, and (c) K-M-COW-SVM model. 
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Sound I II III Total 

RAW 100/97.92 100/100 87.5/97.92 93.75/100 95.31/98.96 

GF 100/97.92 100/100 87.5/97.92 100/100 96.88/98.96 

R 
SNV 98.44/100 81.25/95.83 81.25/100 81.25/97.92 84.38/98.44 

MSC 93.75/100 81.25/89.58 81.25/93.75 87.50/95.83 85.94/94.79 

COW 87.5/95.83 93.75/83.33 75/87.5 100/93.75 89.06/90.10 

SGD 93.75/95.83 81.25/87.5 68.75/85.42 87.5/95.83 81.25/91.15 

RAW 100/98.44 100/100 100/98.44 100/100 100/98.98 

GF 100/98.44 93.75/100 93.75/100 100/100 96.88/99.48 

A 
SNV 93.75/100 75/93.75 87.5/95.83 81.25/100 84.38/96.88 

MSC 93.75/100 75/93.75 87.5/95.83 81.25/98.44 84.38/96.88 

COW 100/97.92 87.5/100 87.5/100 93.75/95.83 92.19/98.44 

SGD 100/97.92 62.5/87.5 62.5/91.67 75/89.58 75/91.67 

RAW 100/100 93.75/97.92 87.5/100 93.75/100 93.75/99.48 

GF 100/100 93.75/97.92 87.5/100 93.75/100 93.75/99.48 

K-M 
SNV 87.5/100 85.71/91.67 68.75/89.58 87.5/95.83 79.69/94.27 

MSC 87.5/100 85.71/91.67 68.75/89.58 87.5/95.83 79.69/94.27 

COW 100/100 87.5/95.83 93.75/100 100/97.92 95.31/98.44 

SGD 75/100 87.5/100 68.75/100 93.75/97.92 79.69/99.48 
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higher the precision of the model is indicated [24]. From 

Tables 2 and 3, it can be found that the performance model 

based on A spectra is best, and its accuracy and precision are 

higher than R spectra and K-M spectra. 

 

 Selection of Characteristic Wavelength. To simplify 

the spectral dataset and enhance the speed of the model 

run, CARS and UVE were used to filter the spectra with 

better modeling results for the characteristic wavelengths, 

respectively. A total of nine spectra were selected, and 

their discrimination accuracies were all greater than 

89.06%, which were R-RAW, R-GF, R- COW, A-RAW, 

A-GF, A-COW, K-M-RAW, K-M-GF, and K- M-COW. 

The subset of wavelengths with the smallest RMSECV 

was obtained by first building a partial least squares 

model in CARS, and then, the wavelengths in the model 

were selected that correspond to the larger regression 

coefficients [25]. The A-RAW spectra are used as an 

example to introduce the characteristic wavelength 

selection of CARS, and its se- lection process is shown 

in Figure 6. CARS is performed 100 times sampling 

by sampling, and the number of sample variables 

gradually decreases as the number of samples sampled 

increase. RMSECV decreases and then increases to a 

minimum value of 0.4902 at 20 runs, with the 

characteristic wavelength determined by the minimum 

RMSEP during the sampling run [26]. 
The PLS model was established in UVE by cross- 

validation, and then, the ratio of the mean and standard 

deviation of the regression coefficients of the PLS model was 

calculated to select valid spectral information [27]. The 

wavelength selection process of UVE is introduced by using 

A-RAW spectra as an example, and it its selection process is 

shown in Figure 7. Yellow curve is the original variable and 

red curve is the filtered-free variable. The dotted line in 

Figure 7 shows the threshold splitting line with upper and 
lower limits of ±37.9147. According to the UVE selection 

principle, wavelengths within the threshold split line should 

be discarded, and wavelengths outside the threshold split 

line region are selected as characteristic wavelengths [28]. 
The results of the R spectra characteristic wavelength se- 

lection are shown in Figure 8. The R-RAW spectra have 10 

characteristic wavelengths selected by the CARS algorithm, 

accounting for 5.68% of the total number of spectra. The 21 

characteristic wavelengths selected by UVE for the R-RAW 

spectra are shown in Figure 8(b), accounting for 11.93% of the 

total number of spectra. The 10 characteristic wavelengths 

selected by CARS for R-GF spectra are shown in Figure 8(c), 

accounting for 5.68% of the total number of spectra. The 57 

characteristic wavelengths selected by the R-GF spectra by the 

UVE algorithm are shown in Figure 8(d), accounting for 

32.39% of the total number of spectra. The 16 characteristic 

wavelengths selected by CARS for the R-COW spectra are 

shown in Figure 8(e), accounting for 9.09% of the total number 

of spectra. The 111 characteristic wavelengths of the R-COW 

spectra selected by the UVE algorithm are shown in Figure 8(f ), 

accounting for 63.07% of the total number of spectra. 
The results of characteristic wavelength selection for the 

A spectra are shown in Figure 9. The 75 characteristic 

wavelengths selected by CARS for the A-RAW spectra are 

shown in Figure 9(a), accounting for 42.61% of the number 

of wavelengths in the full spectra. The 98 characteristic 

wavelength points selected by CARS for the A-RAW spectra 

are shown in Figure 9(b), accounting for 55.68% of the 

number of wavelengths in the full spectra. The 85 charac- 

teristic wavelengths selected by CARS for the A-GF spectra 

are shown in Figure 9(c), accounting for 48.3% of the 

number of wavelengths in the full spectra. The 97 charac- 

teristic wavelengths of the A-GF spectra selected by UVE are 

shown in Figure 9(d), accounting for 55.11% of the number 

of wavelengths in the full spectra. The 6 characteristic 

wavelengths selected by CARS for the A-COW spectra are 

shown in Figure 9(e), accounting for 3.41% of the number of 

wavelengths in the full spectra. The 71 characteristic 

wavelengths of the A-COW spectra selected by UVE are 

shown in Figure 9(f ), accounting for 40.34% of the number 

of wavelengths in the full spectra. 
The results of characteristic wavelength selection for K-M 

spectra are shown in Figure 10. 75 characteristic wavelengths 

selected by CARS for K-M-RAW spectra are shown in 

Figure 10(a), accounting for 42.61% of the number of wave- 

lengths in the full spectra. The 98 characteristic wavelengths 

selected by CARS for K-M-RAW spectra are shown in 

Figure 10(b), accounting for 55.68% of the number of wave- 

lengths in the full spectra. The 43 characteristic wavelengths 

selected by CARS for K-M-GF spectra are shown in Figure 10(c), 

accounting for 24.43% of the number of wavelengths in the full 

spectra. The 103 characteristic wavelengths of K-M-GF spectra 

selected by UVE are shown in Figure 10(d), accounting for 

58.52% of the number of wavelengths in the full spectra. The 33 

characteristic wavelengths selected by CARS for K-M-COW 

spectra are shown in Figure 10(e), accounting for 18.75% of the 

number of wavelengths in the full spectra. The 60 characteristic 

wavelengths of A-GF spectra selected by UVE are shown in 

Figure 10(f), accounting for 34.09% of the number of wave- 

lengths in the full spectra. 
From the characteristic wavelength selection results of 

CARS and UVE, it can be seen that the number of char- 

acteristic wavelengths selected by UVE is significantly more 

than the number of characteristic wavelengths selected by 

CARS. The reason for this may be that both CARS and UVE 

are characteristic wavelength selection methods based on the 

regression coefficients of the PLS model, but UVE uses the 

regression coefficients as a measure of wavelength impor- 

tance, while the CARS uses the absolute value of the re- 

gression coefficients as a measure of wavelength importance 

[22, 23]. Zhou et al. [6] used hyperspectral to detect sugar 

content in pears, and the characteristic wavelength selection 

of spectral wavelengths was performed by CARS and UVE, 

and their results showed that the number of characteristic 

wavelengths selected by UVE (390) was more than the 

number of characteristic wavelengths selected by CARS (42). 

 

 Results and Analysis of Spectral Models of 

Characteristic Wavelengths. The SVM model based on 

the characteristic spectra selected by CARS and UVE 

screening was selected with the number of wavelengths 

from 6 (A-COW-CARS) to 111 (K-M-RAW-UVE). 

The discrimination results of the 
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TaBlE 3: Results of macro-F for SVM models based on R-GF, A-RAW, and K-M-COW spectra. 

Discriminant model 
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FIgurE 6: Process and results of A-RAW-CARS characteristic wavelength selection. 
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FIgurE 7: Process and results of A-RAW-UVE characteristic wavelength selection. 

 

SVM model are shown in Table 4. The 58 characteristic 

wavelengths of the R-GF spectra selected by UVE in the R 

spectra have the highest discrimination accuracy, with 

95.32% and 100% for the test and calibration sets. The 75 

characteristic wavelengths of the A-RAW spectra selected by 

CARS in the A spectra have the highest discrimination 

accuracy, with 96.88% and 100% for the test and calibration 

sets. The 43 characteristic wavelengths of K-M-GF spectra 

selected by CARS in K-M spectra have the highest dis- 

crimination accuracy, with 93.75% and 96.88% for the test 

and calibration sets. 

The optimal model based on the R spectra after char- 

acteristic wavelength selection is the R-RAW-UVE-SVM 

model, and the confusion matrix of model discrimination 

results are shown in Figure 11(a). 1 sound sample in the test 

set is misclassified as level I damage sample, and 1 level II 

damage sample is misclassified as level I damage sample. 2 

sound samples in the calibration set are misclassified as level 

II damage samples, 2 level I damage samples are mis- 

classified as level II damage samples, 2 level II damage 

samples are misclassified as level I damage samples and level 

III damage, and 2 level III damage samples are misclassified 
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 Sound I II III  

R-GF-SVM 0.9921 0.9771 0.9760 0.9922 0.9844 

A-RAW-SVM 0.9921 1 0.9844 0.9922 0.9922 

K-M-COW-SVM 0.9922 0.9677 0.9546 0.9921 0.9767 
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FIgurE 8: Results of R spectra characteristic wavelength selection based on CARS and UVE. Characteristic wavelength of R-RAW spectra 

selected based on (a) CARS and (b) UVE. Characteristic wavelength of R-GF spectra selected based on (c) CARS and (d) UVE. Characteristic 
wavelength of R-COW spectra selected based on (e) CARS and (f ) UVE. 
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FIgurE 9: Results of the selection of A spectra characteristic wavelengths based on CARS and UVE. Characteristic wavelength of the A-RAW 

spectra selected based on (a) CARS and (b) UVE. Characteristic wavelength of the A-GF spectra selected based on (c) CARS and (d) UVE. 
Characteristic wavelength of the A-COW spectra selected based on (e) CARS and (f ) UVE. 

 

as level II damage samples. The optimal model based on the 

A spectra after characteristic wavelength selection is A- 

RAW-CARS-SVM, and the confusion matrix of the model 

discrimination results is shown in Figure 11(b). 1 sound 

sample in the test set is misclassified as the level II damage 

sample, and 1 level II damage sample was misclassified as the 

level I damage sample. There are no misclassified samples in 

the calibration set. The optimal model based on the A spectra 

after characteristic wavelength selection is A-RAW-CARS- 

SVM. The confusion matrix of the model discrimination 

results is shown in Figure 11(b), where 1 sound sample in the 

test set is misclassified as level II damage sample and 1 level 

II damage sample is misclassified as the level I damage 

sample. There are no misclassified samples in the calibration 

set. The optimal model based on K-M spectra is the K-M- 

GF-UVE-SVM model. The confusion matrix of model 

discrimination results is shown in Figure 11(c). 1 sound 

sample in the test set is misclassified as level I damage 

sample; 2 level II damage samples is misclassified as level I 

damage samples. 2 sound samples in the calibration set are 

misclassified as level II damage samples, 1 sound sample is 

misclassified as level I damage sample, 2 level I damage 

samples are misclassified as level II damage samples, 1 level I 

damage sample is misclassified as level III damage sample, 2 

level III damage samples are misclassified as level I damage, 2 

level III damage samples are misclassified as level II damage 
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FIgurE 10: Results of K-M spectral characteristic wavelength selection based on CARS and UVE. Characteristic wavelength of the K-M- 
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TaBlE 4: Discriminant results of SVM based on the characteristic wavelengths of R, A, and K-M spectra. 

Spectra Pretreatment Wavelength selection 
Number of characteristic

 
Discriminant accuracy (%) 
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FIgurE 11: Confusion matrix of the optimal SVM model discrimination results based on R, A, and K-M spectra after wavelength selection. 

Confusion matrix for the discriminant results of the (a) R-RAW-UVE-SVM model, (b) A-RAW-CARS-SVM model, and (c) K-M-GF-UVE- 
SVM model. 
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 wavelengths Test set Calibration set 

RAW  10 84.38 81.81 

GF CARS 10 85.94 83.33 

R 
COW  16 93.75 92.19 

 
GF UVE 58 95.31 100 

COW  111 95.31 93.75 

RAW  75 96.88 100 

GF CARS 85 93.75 97.4 

A 
COW  6 82.81 90.63 

 
GF UVE 97 89.06 91.67 

COW  71 92.19 99.48 

RAW  15 87.5 91.67 

GF CARS 43 93.75 96.88 

K-M 
COW  33 78.13 86.46 

RAW  111 93.75 94.79 

GF UVE 103 95.31 94.27 

COW  60 93.75 94.27 
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TaBlE 5: Macro-F1 results of SVM model discrimination based on 
R-RAW-UVE, A-RAW-CARS, and K-M-GF-UVE spectra. 

 
 

Fi value 

0.9922, and the A-RAW-SVM model showed high dis- 

crimination accuracy. Two false samples were found in the 

SVM discriminant model based on the characteristic 
Spectral models 

Sound I II III 
Macro-F value wavelengths of the A-RAW spectra after CARS selection, 

and the number of false samples was the same as before 

CARS selection. The macro-F value of the A-RAW- 

F-UVE    0.9677 0.9243 0.9231 0.9683       0.9481         

 
samples, and 1 level III damage sample is misclassified as 

level I damage sample. 

The discriminant results are shown in the confusion 

matrix of Figure 11, the macro-F values of the R-RAW- 

UVE-SVM model, A-RAW-CARS-SVM model, and K-M- 

GF-UVE-SVM model are calculated by (4), and the results 

are shown in Table 5. 

Table 5 shows that the macro-F value of the R-RAW- 

UVE-SVM model, RAW-CARS-SVM model, and K-M- 

GF-SVM model is 0.9605, 0.9922, and 0.9481, respectively. 

The closer the macro-F value is to 1, the higher the precision 

of the model is indicated. From Tables 4 and 5, it can be 

found that the accuracy and precision of the SVM model 

based on the A spectra after characteristic wavelength se- 

lection are higher than those of the R spectra and K-M 

spectra after characteristic wavelength selection. The results 

demonstrate that the A spectra by CARS has the best model 

discrimination performance. The CARS, which is widely 

used for characteristic wavelength selection of spectral data, 

is an efective characteristic wavelength selection method. 

Xuan et al. [29] used the characteristic wavelengths of R 

spectra selected by CARS to build MLR models to assess 

soluble solids (SSC) and hardness of peaches, and the results 

showed that hyperspectral combined with MLR had best 

discrimination results. Zhan et al. [30] selected the char- 

acteristic wavelengths of hyperspectral by pairing methods 

such as CARS and UVE. The results showed that the 

nonlinear model partial least squares support vector ma- 

chine (LS-SVM) by CARS-selected spectra had the best 

results for pear fragrance identification. 

 

4. Conclusions 

In this study, the R spectra of sound as well as level I, II, and 

III damaged crown pears were acquired separately using 

a hyperspectral acquisition system, and then, the A spectra 

and K-M spectra were obtained from the R spectra by 

transformation of the equations. Linear PLS-DA models and 

nonlinear SVM models were developed for each of the three 

spectra and the discriminant results were explained. It was 

found that as the level of damage of the crown pears in- 

creases, the spectral reflectance decreased and the spectral 

absorbance increased. In the R, A, and K-M spectra models, 

the nonlinear SVM model was found to outperform the 

linear PLS-DA model by discriminating the results. The 

SVM discriminant model based on the A spectra out- 

performed the R and K-M spectra, and the discriminant 

accuracy of the test and correction sets of the SVM model 

based on A-RAW spectra was 100% and 98.98%, re- 

spectively. Moreover, the macro-F value of the model was 

CARS-SVM model after CARS selection was 0.9922, and the 

accuracy of the model was the same as that of the full spectra 

model, while the discriminant time of the model time was 

greatly reduced. In conclusion, the hyperspectral technology 

can be used to discriminate diferent damage levels of crown 

pears, and the nonlinear SVM model based on the A spectra 

has better discriminative efect on diferent damage levels of 

crown pears. 
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