
Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1738 Copyright @ 2021 Authors

Building a Partitioned Cache as a Side-Channel Protective

Mechanism

Mr.BIKASH RANJAN DAS*, Prof. SUNIL KUMAR MISHRA

Dept. OF Computer Science and Engineering, NIT , BBSR

bikashranjan@thenalanda.com*,sunilmishra@thenalanda.com

Abstract. A number of effective side-channel attack techniques have been

developed recently based on the data-dependent behaviour of microprocessor

cache memory. The majority of suggested defence measures are software-based,

and they mostly serve to make it harder for attackers to launch attacks rather than

completely stopping them. In this research, we explore the usage of hardware-

assisted defence using a congurable cache architecture. We offer the chance for

greater speed as well as security by exposing the cache to the processor and

allowing it to be dynamically configured to match the requirements of a given

application.

1 Introduction

State of the art cryptanalysis has conventionally resided in the realm of mathe- maticians

who seek techniques to unravel the hard problems on which modern cryptosystems are

based. Side-channel analysis moves the art of cryptanalysis from the mathematical domain

into the practical domain of implementation. By considering the implementation of

cryptosystems rather than purely their spec- i cation, researchers have found they can

mount attacks which are of low cost in terms of time and equipment and are highly

successful in extracting useful results.

Side-channel attacks are based on the assumption that one can observe an algorithm

being executed on a processing device and infer details about the internal state of

computation from the features that occur. Such observation is typically performed by passive

monitoring execution features such as timing vari- ations [15], power consumption [16] or

electromagnetic emission [1, 2]. Attacks usually consist of a collection phase which provides

the attacker with pro les of execution, and an analysis phase which recovers the secret

information from the pro les. Considering power consumption as the collection medium for

exam- ple, attack methods can be split into two main classes. Simple power analysis (SPA) is

where the attacker is given only one pro le and is required to recover the secret information

by focusing mainly on the operation being executed. In contrast, di erential power analysis

(DPA) uses statistical methods to form a correlation between a number of pro les and the

secret information by focusing

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1739 Copyright @ 2021 Authors

mainly on the data items being processed. Both these techniques present a clear danger to

security sensitive applications, especially since attacks can be mounted with low cost,

commodity signal processing equipment.

As understanding side-channel attack and defence has evolved, new methods of inferring

secret information from execution pro les have emerged. One such method is monitoring the

data dependent behaviour of the processor memory hierarchy and, in particular, any cache

memories present. The concept of using cache behaviour as a side-channel was rst mooted

by Kocher [15] who noted the e ect of memory access on execution time, and then Kelsey et

al. [12] who pre- dicted that the timing dependent behaviour of S-Box access in Blow sh,

CAST and Khufu could leak information to an attacker. This was followed with more

concrete attacks on DES by Page [21], who assumed cache behaviour would be visible in a

pro le of power consumption, and Tsunoo et al. [28, 27] who simply required that an

attacker timed the cipher over many executions. Further break- throughs were made by

Bertoni et al. [4] and Bernstein [3] who applied power and timing analysis attacks to AES.

The former work shows cache behaviour is ob- servable in a power trace, the latter shows

that attacks can be mounted remotely; both further magnify the danger of cache attacks in an

operational context. Fi- nally and most recently, Percival [22] demonstrated an attack

against CRT based RSA utilising the Hyper-Threading capability of Intel Pentium 4

processors but essentially relying on cache behaviour as a means of leaking information.

Subse- quently, such inter-process attacks have been extensively investigated by Osvik et

al. [19].

In this paper we investigate the use of partitioned cache architecture as an aid to

defending against cache based side-channel attack. Such designs dynamically split the cache

memory into protected regions. As a result, the level of cache in- terference is drastically

reduced and the cache can be con gured speci cally for an application rather than

optimising for the average case. Traditionally, such partitioned caches have been proposed

as ideal for embedded and media proces- sors due to their size, performance and power

characteristics. This alone provides a compelling reason for their use in the same

computational environments which are most vulnerable to conventional side-channel style

attacks. However, features such as dynamic con guration of the address translation function

and protec- tion or locking of data in the cache also provide a number of opportunities for

countermeasure against both pro le and timing driven cache based side-channel attacks. To

restrict our focus, we primarily consider block ciphers, and access through the cache to S-

box style tables, since the majority of attacks exist in this context. Further, we concentrate

only on data caches by assuming instruction and data access is segregated. We try to take a

processor agnostic approach by leaving open several implementation choices which do not

otherwise e ect our work.

The paper is organised as follows. In Section 2 we give an introduction to cache

partitioning before describing the experimental cache architecture used subsequently. In

Section 3 we recap on cache based side-channel attack meth- ods; we describe proposals for

software based countermeasures before outlining

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1740 Copyright @ 2021 Authors

-

Partition 1 -

-

Partition 2 -

-

Partition n -

(a) A conventional memory hierarchy.

(b) A partitioned cache.

Fig. 1. Using lters to describe conventional and partitioned cache hierarchies.

how partitioned caches can be utilised to provide hardware based alternatives. Finally, we

present some concluding remarks and areas for further work in Sec- tion 4.

2 Caches and Cache Partitioning

A cache is a small area of fast RAM and associated control logic which is placed between

the processor and main memory; for an in depth description of cache design and

operation see [9, Chapter 5]. The area of RAM is typically organised as a number of cache

lines, each of which comprise a number of sub-words that are used to store contiguous

addresses from main memory. Since the cache is smaller than main memory, it stores a

sub-set of the memory content. As a result of locality in the incoming address stream, the

cache reduces the load on the rest of the memory hierarchy by holding the current working

set of data and instructions. Accesses that are serviced by the cache are termed cache-hits

and are completed very quickly; accesses that are not held by the cache are termed cache-

misses and take much longer to complete since main memory must be accessed. Since

locality guarantees we should get more cache-hits than cache- misses, performance of the

average case application is improved. However, given that many addresses in memory can

map to the same location in the cache, data items can compete for space and evict each

other; this is termed cache interference or contention.

As an aid to understanding complex cache designs, Weikle et al. [30] use the concept

of optical lters as a metaphor for how such systems operate. As shown in Figure 2a,

each level of the memory hierarchy acts as a lter which translates a input stream of

memory references into an output stream that is

-

Cache 1
-

Cache 2 -

-

Cache n -

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1741 Copyright @ 2021 Authors

dependent on the properties of that level. Utilising the concepts of temporal and

spacial locality, the hope is to combine these lters so that they remove as many

references as possible, reduce the load on slower parts of the memory hierarchy and

maximise performance. One draw back of this approach is that the references for all data

objects in all running processes are conglomerated into one monolithic stream. The

memory hierarchy must be optimised for the average case program and can thus fall foul

of interference patterns as a result. Although speci c designs di er slightly, a partition cache

is a direct-mapped style cache that can be dynamically partitioned into protected regions

by the use of specialised cache management instructions. By modifying the instruction set

architecture (ISA) and tagging memory accesses with partition identi ers, each access is

hashed into a partition dedicated to dealing with it. Phrased using the metaphor of

caches as lters, the idea of a partitioned cache is to act as a refraction lens or prism

by separating the stream of input references into a number of sub-streams; see Figure 2b.

A coarse grained example of this technique in action is where a segregated, Harvard

style instruction and data cache architecture is used. Although on a smaller and less con

gurable scale, this choice performs the same function as cache partitioning by splitting

the

reference stream into instruction and data streams.

The decision of how to split the resources into instruction and data caches in a

Harvard style architecture is performed at design-time by optimisation for an average case

which is unlikely to suit all application programs. Unlike con- ventional caches, the

partitioned cache is visible to software running on the host processor. This allows one to

utilise the cache management instructions and load/store mechanism to allocate partitions of

the cache to speci c data objects and streams of instructions so as to control persistence and

eliminate interference at run-time. Typically, one would expect such cache management

instructions to only be available when the processor is in protected mode and hence

managed by the operating system; this ensures user processes cannot examine or alter each

others cache con guration. For example, the act of one process accessing a partition owned

by another would result in an exception.

 Previous Work

Enforcing segregation of processes cache content from each other is not a new idea. The

cheapest way to implement such a scheme, and one typically used to improve

performance, is by using software based layout rules to place instructions and data in the

process image so they do not interfere with each other in the cache. For example, among

a vast amount of work in the area Mueller [18] presents a software based partitioning

method for direct-mapped caches with applications in real-time computing, while Calder et

al. [5, 8] provide further mechanisms for cache conscious layout. Alternatively, one can

consider allowing control of the cache by exposing it to the programmer; one might view

this as a less general form of scratch-pad memory. For example, Wagner [29] allows the

programmer to control the address translation mechanism to facilitate cache conscious loop

blocking in kernels such as matrix multiplication. Zhang et al. [31]

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1742 Copyright @ 2021 Authors

Hit/Miss Data

Fig. 2. A block diagram describing a partitioned cache.

describe a cache with con gurable levels of associativity that be controlled by the

programmer.

Perhaps the rst hardware assisted cache partitioning designs were presented by Juan et

al. [11] and Gonzalez et al. [6] in the context of high performance computing. As

interest in the area has increased, further designs have included those of Page [20] and

Irwin [10], who focus on multi-threaded architectures and compiler directed partitioning;

Ranganathan et al. [24], who focus on use in media applications; and both Kim et al. [13]

and Petrov and Orailoglu [23], who focus on low-power implementations. Although

implementing such a device is clearly a problem in conventional commodity processors,

within domain-speci c and high-volume markets as is the case with embedded processors, it

has already been investigated. For example, a precursor to the SH5 was produced by ST

Microelectronics that utilised a degree of cache partitioning detailed in later patents on

partitioning hardware [25]. This media-oriented processor used a xed number of partitions to

segregate memory accesses produced by di erent system constituents.

 Cache Design

Assuming a RISC style processor architecture, Figure 2.2 describes the opera- tion of a

simple partitioned cache. From here on we assume each cache line is

Decode Execute
Memory

Access

Ctag Cvalid Cdirty

?

Cdata

-
-

?? ? ??

Prefetch
FIFO

?

- Translate
Address

-
?

Match

? ?

Pmask Pstride Pvsize Ppsize Pstart

Write
Back

Fetch

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1743 Copyright @ 2021 Authors

composed from a number of sub-words that are each one byte, that is 8-bits, in size and the

memory system is byte addressed; clearly this might di er depend- ing on the exact

architecture. A conventional, direct-mapped storage structure is coupled with a second

structure which houses the cache con guration. Each access to the cache is tagged with a

partition identi er which is used to access this con guration data. The resulting information

is used by the address trans- lation function to map the address into the correct line and sub-

word the storage structure. One of the perceived disadvantages of this design is the potential

for an increased critical path length as a result of the extra look-up into the cache con

guration. In processor designs that use a high clock speed, this is certainly a problem.

However, aside from simply accommodating this increase with a slower clock speed we can

somewhat reduce the overhead in a pipelined design. De- pending on the processor

architecture, the partition identi er could be either a register or immediate operand; in

either case we can are-fetch the associated con guration data in the decode phase and hide

the cost of the extra look-up.

We augment this basic design with three features which further enhance the degree of

con gurability, and hence exibility, of the cache:

{ Firstly, we include the concept of strided cache lines. Instead of sub-words in a cache

line being contiguous addresses in memory, they are permitted to be spaced apart by

a xed distance; this distance is the stride which can be con gured on a per-partition

basis. The bene t of strided cache lines is realised, for example, during execution of

media applications who often access image data in this manner: the resulting cache

behaviour exhibits less interference and higher performance as a result of catering for

it.

{ Next we introduce the concept of adaptive line size; see for example the work of Tang et

al. [26]. Essentially, we allow each partition to be con gured so that the line size, and

hence size of transfer between the cache and memory, can be set at run-time. This is

implemented by de ning a xed physical line size and allowing a virtual line to span a

number of physical lines. A cache- hit is serviced in the same way normal; a cache-miss

causes an entire virtual line to be retrieved from memory.

{ Finally we de ne a mask, or o set value for each partition which acts to per- turb the

address translation. This essentially allows the address translation to be randomised

on a per-partition basis and is similar in concept to work on XOR based placement

strategies; see for example the work of Gonzalez et al. [7]. Adding the mask to the

original address allows virtual movement of addresses in memory with respect to

cache operation but without the cost of actually moving them. Clearly this perturbed

address is only used for cache operation: when addressing memory during loads and

stores the cache uses the original address.

Given an access to address A0 using partition P , the cache rst retrieves the con

guration data yielding:

{ Pstart, the line at which the partition begins.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1744 Copyright @ 2021 Authors

mask

line word

line word

{ Ppsize, the number of physical lines in the partition.

{ Pvsize, the number of physical lines per virtual line.

{ Pstride, the stride between sub-words in the partition.

{ Pmask, the address perturbation mask for the partition.

We assume that there are Clines cache lines in total and that each line has Cwords sub-words

in it. The address is perturbed using the mask to give A = A0 +P . From this, the

address translation function computes the physical line and sub- word, denoted by Apline

and Apword, as follows:

Apline = ((A lsb(Pstride))=Cwords) mod Psize Apword =

(A lsb(Pstride)) mod Cwords

The required data is therefore located in line Pstart +Apline at sub-word Apword. The

virtual line, denoted by Avline, associated with Apline can be calculated as

Avline = Apline =Pvsize:

Note that in the above lsb(x) returns the position of the least signi cant bit of x, x y denotes

a logical left shift of x by y bits, and all division is integer division. Indeed, we required that

Pstride, Ppsize, Pvsize and Cwords be powers-of-two so the scheme is realistically

implementable.

As an example, consider a cache with Clines = 128 and Cwords = 4. We create a

partition P in this cache and con gure it with Pstart = 8, Ppsize = 4, Pvsize = 2, Pstride = 2

and Pmask = 0. Addresses 0; 2; 4;:: : ; 18 map into the cache structure as follows:

A0 = 0 A = 0 A = 8 A = 0 ! Miss

A0 = 2 A = 2 A = 8 A = 1 ! Hit

A0 = 4 A = 4 Aline = 8 Aword = 2 ! Hit

A0 = 6 A = 6 Aline = 8 Aword = 3 ! Hit

A0 = 8 A = 8 Aline = 9 Aword = 0 ! Hit

A0 = 10 A = 10 Aline = 9 Aword = 1 ! Hit

A0 = 12 A = 12 Aline = 9 Aword = 2 ! Hit

Aword = 3 ! Hit Aword = 0 !

Miss Aword = 1 ! Hit

Notice that our performance is good; the strided cache lines are increasing the density of

used data. This, coupled with the fact that our partition is protected from address streams

that access other objects, means both spacial and temporal locality have a better chance of

being capitalised on. Useful data is likely to be more persistent due to the lack of

interference; any pre-fetching will be more accurate as a result. Also notice that as a

result of our virtual line size, we remove the miss that address 8 would have otherwise

caused: when the miss from address 0 occurred, we fetched lines 8 and 9 rather than just

8. This sequence is dependent on the mask however, for example setting Pmask = 4

produces

A0 = 14 A = 14 Aline = 9

A0 = 16 A = 16 Aline = 10

A0 = 18 A = 18 Aline = 10

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1745 Copyright @ 2021 Authors

line word

line word

di erent usage of lines:

A0 = 0 A = 4 A = 8 A = 2 ! Miss

A0 = 2 A = 6 A = 8 A = 3 ! Hit

A0 = 4 A = 8 Aline = 9 Aword = 0 ! Hit

A0 = 6 A = 10 Aline = 9 Aword = 1 ! Hit

A0 = 8 A = 12 Aline = 9 Aword = 2 ! Hit

Aword = 3 ! Hit Aword = 0 !

Miss Aword = 1 ! Hit

A0 = 16 A = 20 Aline = 10 Aword = 2 ! Hit

A0 = 18 A = 22 Aline = 10 Aword = 3 ! Hit

 ISA Design

Equipping a processor with partitioned cache hardware demands changes to the ISA so that

the cache is a visible part of the architecture. These changes need to include how partition

identi ers are passed to the memory hierarchy with normal loads and stores, and include

extra instructions which manage the cache con guration.

Passing the partition identi er to the memory hierarchy can be achieved in several ways:

by adding an extra register or immediate operand to instructions; via a dedicated register

which speci es the active partition; or even by using out- of-band address bits to specify the

partition. For our purposes, the mechanism is irrelevant: we simply assume the partition

identi er is an extra operation to each load and store instruction. We also assume only a

basic of cache management interface which must be exposed somehow as instructions:

{ ADDPAR pid, start, psize, vsize, stride, mask

Add a partition with identi er pid to the con guration, allocating it psize physical

lines starting at line start. Also set the virtual line size of the partition to vsize

and the stride and mask values to stride and mask respectively.

{ DELPAR pid

Delete the partition with identi er pid from the con guration.

{ INVPAR pid

Flush the partition with identi er pid so that any data stored in it is evicted and

potentially written back to the next level of the memory hierarchy.

3 Cache Based Side-Channel Attacks

Consider a theoretical block cipher EK which encrypts plaintexts using the key K and uses

a single S-box S during execution. We assume that all memory access during execution is

due to the S-box; this is a vast simpli cation but somewhat reasonably from the point of

view of block ciphers since most of the working data set can be held in registers. Say there

are two accesses to the S-box, S[i] and

A0 = 10 A = 14 Aline = 9

A0 = 12 A = 16 Aline = 10

A0 = 14 A = 18 Aline = 10

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1746 Copyright @ 2021 Authors

S[j], using indices i and j to provoke access to addresses Ai and Aj in memory. These

accesses will usually have little or no locality since by design, the indicies will be randomly

distributed throughout the S-box.

As a simple example attack, if the cache is initially empty and the second access

results in a cache-hit, we can deduce that up to the bits that select the sub-word Ai = Aj

and hence i = j. Typically, i and j are computed using the secret information K and a

plaintext P , for example from the result of a key addition. Roughly speaking, the attacker

can use the details of the cipher and a number of collected relationships to recover K

using an adaptive plaintext attack.

 Attack Methods

Trace based methods assume that the attacker, by observing a side-channel such as a

power consumption, is able to recover traces of cache behaviour. One might view this as

analogous to an SPA style attack: each access the executing algorithm makes to memory

will be visible in the trace as either a cache-hit or cache-miss depending on how the

cache serviced the access. For example, denoting a cache-hit by H and a cache-miss by

M , the trace

MMHMHH : : :

tells the attacker that accesses one and two were cache-misses while access three was a

cache-hit and so on. After matching features in the trace to operations in the algorithm, the

the required relationships between indices can be recovered and hence o er a point of

attack [21, 4].

Timing based methods use a more statistical, DPA style approach to attack. Since they

require a much easier form of monitoring, simple timing of the algo- rithm rather than a pro

le of power consumption, are more realistically mounted both locally and remotely.

Essentially, such attacks work by assuming more cache-hits means shorter execution time;

hence shorter execution time means it is more probable that indices used for any given S-

box access are the same. Given this correlation and numerous plaintexts which provoke a

short execution time, the attacker can form probabilistic relationships between the

indices. In the same sense as above, if the indices are derived from secret information, the

skew in probability gives a point of attack [28, 27, 3].

 Defence Methods

Since security in some applications is a high priority, the above attack methods have

naturally provoked several countermeasures; see the work of Bernstein [3] and Osvik et al.

[19] for a number of for an extensive and modern approaches. Given that instrumenting new

a cache architecture can be an expensive and disruptive task, such countermeasures have

typically been software based. One option is implement the block cipher such that the

execution is somehow constant in terms of cache behaviour:

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1747 Copyright @ 2021 Authors

{ Most drastically, one can consider turning o the cache for S-box access, essentially

employing cache-bypass to always load data directly from mem- ory. By eliminating

the potential for cache-hits and cache-misses we reduce performance signi cantly but

ensure that each access takes the same length of time.

{ For small S-boxes, we can consider pre-fetching or warming their content into the cache

before execution begins. This essentially makes all S-box accesses cache-hits and hence

constant time. However, this is only true if the S-box content is never evicted by other

data or instructions and the S-box ts entirely into the cache: neither of these

assumptions are guaranteed and hence the method can only be described as

statistically sound.

{ As proposed by Bernstein [3] and many others, a good approach is to avoid S-box tables

altogether and use some form of computed non-linear trans- formation instead. This not

only o ers greater assurance of constant time access, but allows the potential for parallel

execution of such transforma- tions which are denied by the need for sequential memory

access. As an example, one might consider the transformations described by Klimov and

Shamir [14].

Alternatively, one can randomise execution in order to at least partly mask features in

any collected side-channel pro le:

{ In the most simple case, one can randomly insert dummy load operations in the

execution so that the execution time is randomised to some extent. Realistically, this

method is not sound since the randomisation is simply noise that can be statistically

removed. Additionally, since extra operations need to be serviced, the overall average

execution time might increase by an unattractive factor. However, the approach has

some value when considering attacks which operate on behaviour traces rather than

timing information: with enough dummy loads inserted one cannot be sure if a given

cache-hit or cache-miss is produced by real or faked execution.

{ In a similar vein, random reordering of memory accesses will reduce the correlation

between a captured behaviour trace or execution timing and the input and algorithm.

This can be achieved, for example, by using a non- deterministic processor

architecture [17] but must be careful not to introduce potential hazards from the

reordering.

{ Alternatively, one can insert actual random delays in the execution to ran- domise the

overall execution time. This su ers from the same drawbacks of inserting random load

operations in the sense that the statistical noise can be removed and will potentially

increases the average execution time.

 Using a Partitioned Cache

The bene ts of adding a partitioned cache to devices which are vulnerable to side- channel

attack are two-fold. Firstly, embedded processors at the heart of such devices are

typically constrained in both computational and storage ability. Any

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1748 Copyright @ 2021 Authors

method of masking such de ciency is hence valuable; the proposed architecture has a

number of well studied advantages in terms of size, performance and power characteristics,

particularly when operating with small, kernel sized applications.

More importantly in terms of the current work, one would hope to use the high

degree of exibility and con gurability to combat side-channel attacks against more

conventional designs. With this in mind, and although a perfect defence mechanism is

somewhat unrealistic, we propose three areas in which a partitioned cache can at least

improve on current cache designs:

Remark 1. Since a partitioned cache segregates the cache behaviour of one pro- cess from

another, it seems to totally prevent inter-process style attacks such as that of Percival.

This is essentially achieved by removing the cache as a shared resource: although the

cache hardware is still shared, access by a process to partitions of another process is

invalid. Further, the segregation mechanism pre- vents intra-process interference in the

sense that if one has enough space to store the S-box entirely in the cache, partitioning o

ers a mechanism to lock it once pre-loaded. This o ers a similar method of defence as

some existing processors already provide, but in a more exible format.

Segregation has a secondary bene t in that it is no longer possible to forcibly

 ush the cache, of for example S-box data, by churning through large dummy arrays.

Some attacks require the cache to be initially empty with respect to such data. This ushing

technique is denied them by a partitioned cache, although simply powering down the

device is clearly still possible.

Remark 2. The authors of several cache based attacks have noted that with longer cache

lines, attack is more diÆcult. This is intuitively easy to see: with longer lines more bits

will be used to determine the sub-word and hence one can infer less information about

addresses that provoke a given cache miss and resulting fetch operation.

The use of virtual line sizes within our design allows one to con gure the fetch size, and

hence in some sense the line size, on a per-partition basis. Hence, by allowing larger

fetch sizes for partitions that store S-box data, we can make the attackers task much

harder. Our design has the marked bene t that since each partition is independently con

gurable, one can select large fetch sizes where required but revert to normal sizes where

not. Therefore, one need not pay any price by optimising for the average case: the

partitions owned by each process can match the exact requirements.

Some unanswered issues arising from this fact are how long the cache lines must be

before an attack is infeasible and how the length of the lines e ects the hit-ratio for a

partition containing S-box data.

Remark 3. Using a perturbation mask, our design essentially allows any address to map to

any line and sub-word in the cache depending on the mask value. Selecting a random

mask prior to execution hence introduces a level of non- determinism in the cache

operation. Although the number of cache-hits and cache-misses is not necessarily

altered, the examples in Section 2.2 show that the order or such features and the

addresses that provoke them does change.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1749 Copyright @ 2021 Authors

This non-determinism is probably not enough to prevent attacks which can

 lter out such noise statistically. However, if one is willing to pay the price of ushing

and re-con guring a partition, it seems useful in decorrelating the results of one execution

from another. As natural consequence, one would expect a trade-o between the increase in

workload for the attacker and the algorithm performance. As above, a key unanswered issue

is where this trade-o lies and whether it can be acceptable from both performance and

security perspectives.

4 Conclusion

Instrumenting a new cache architecture, especially one which changes the way caches are

viewed by the processor, is an architecturally disruptive process. However, altering

standardised cryptographic primitives is also a disruptive and unattractive option. In order

to provide sound defence against cache based at- tack methods at least one of these options

seems a vital step. Such defence methods are ultimately going to be a trade-o between cost,

in terms of either time or space, and security: one cannot hope to utilise conventionally

designed caches, get conventional performance and still be secure. In high volume markets

where bespoke processor designs are permitted, we posit that using a novel cache

architecture produces a number of bene ts.

Beyond the well known size, performance and power characteristics, we have

investigated how a partitioned cache can assist in providing defences against side- channel

attack methods. Use a partitioned cache architecture, and in doing so exposing the cache to

the processor, o ers a number of advantages in this respect. Optimising for the average case

application will inherently produce problems; allowing application speci c con guration o

ers a better degree of control over the cache behaviour. Likewise, treating the cache as a

shared resource between potentially adversarial processes is awed in a secure context;

partitioning allows a exible means of segregating the cache so this danger is removed.

Although there is unlikely to be one single mechanism that o ers defence against all cache

based attacks, the proposed architecture seems to go some way toward helping and o ers

some attractive options for embedded processor designs.

There are many areas in which this work could be extended Firstly and most importantly,

we need to experimentally investigate the observations from Sec- tion 3.3. This includes veri

cation that our proposed architecture does not intro- duce new vulnerabilities not yet

considered. For example by essentially making the cache behaviour more deterministic by

decreasing interference, it is possible we have made attacks easier by simplifying many of

the attackers assumptions. It also seems vital to investigate the physical implementation of

such cache ar- chitecture: size and cost are clearly as important as security in terms of

realistic deployment. It would be additionally interesting to see if such a device could be

implemented using modern, side-channel resistant technologies such as dual-rail logic.

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1750 Copyright @ 2021 Authors

References

1. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM Side-Channel(s). In

Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 29{45,

2002.

2. D. Agrawal, J.R. Rao and P. Rohatgi. Multi-channel Attacks. In Cryptographic Hardware and

Embedded Systems (CHES), Springer-Verlag LNCS 2779, 2{16, 2003.

3. D.J. Bernstein. Cache-timing Attacks on AES. Available at:

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

4. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero and G. Palermo. AES Power Attack

Based on Induced Cache Miss and Countermeasure. In IEEE Conference on Information

Technology: Coding and Computing (ITCC), 2005.

5. B. Calder, C. Krintz, S. John and T. Austin. Cache-Conscious Data Placement. In ACM

International Conference on Architectural Support for Programming Lan- guages and

Operating Systems (ASPLOS), 139{149, 1998.

6. A. Gonzalez, C. Aliagas and M. Valero. A Data Cache with Multiple Caching Strategies Tuned

to Di erent Types of Locality. In ACM International Conference on Supercomputing (ICS),

338{347, 1995.

7. A. Gonzalez, M. Valero, N. Topham and J.M. Parcerisa. Eliminating Cache Con-

 ict Misses Through XOR-Based Placement Functions. In ACM International Conference on

Supercomputing (ICS), 76{83, 1997.

8. N. Gloy, T. Blockwell, M.D. Smith and B. Calder. Procedure Placement Using Temporal

Ordering Information. In IEEE/ACM International Symposium on Mi- croarchitecture

(MICRO), 303{313, 1997.

9. D.A. Patterson and J.L. Hennessy. Computer Architecture: A Qualitative Ap- proach, Morgan

Kaufmann, 1996.

10. J.P.J. Irwin. Systems With Predictable Caching. PhD Thesis, University of Bristol, 2002.

11. T. Juan and D. Royo and J.J. Navarro. Dynamic Cache Splitting. In International Conference

of the Chilean Computational Society, 1995.

12. J. Kelsey and B. Schneier and D. Wagner and C. Hall. Side Channel Cryptanalysis of Product

Ciphers. In Journal of Computer Security, 8 (2-3), 141{158, 2000.

13. S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, M.J. Irwin and

D. Geethanjali. Power-aware Partitioned Cache Architectures. In International Symposium

on Low Power Electronics and Design (ISLEPD), 64{67, 2001.

14. A. Klimov and A. Shamir. A New Class of Invertible Mappings. In Cryptographic Hardware

and Embedded Systems (CHES), Springer-Verlag LNCS 2523, 471{484, 2002.

15. P.C. Kocher. Timing Attacks on Implementations of DiÆe-Hellman, RSA, DSS, and Other

Systems. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS 1109, 104{113,

1996.

16. P.C. Kocher, J. Ja e and B. Jun. Di erential Power Analysis. In Advances in Cryptology

(CRYPTO), Springer-Verlag LNCS 1666, 388{397, 1999.

17. D. May, H.L. Muller and N.P. Smart. Non-deterministic Processors. In Information Security

and Privacy (ACISP), Springer-Verlag LNCS 2119, 115{129, 2001.

18. F. Mueller. Compiler Support for Software-Based Cache Partitioning. In ACM Workshop on

Language, Compiler, and Tool Support for Real-Time Systems, 137{ 145, 1995.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Dogo Rangsang Research Journal UGC Care Group I Journal

ISSN : 2347-7180 Vol-08 Issue-14 No. 04, April 2021

Page | 1751 Copyright @ 2021 Authors

19. D.A. Osvik, A. Shamir and E. Tromer. Cache attacks and Countermeasures: the Case of AES.

In Cryptology ePrint Archive, Report 2005/271, 2005.

20. D. Page. E ective Use of Partitioned Cache Memories. PhD Thesis, University of

Bristol, 2001.

21. D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. In Cryptology

ePrint Archive, Report 2002/169, 2002.

22. C. Percival. Cache Missing For Fun And Pro t. Available at:

http://www.daemonology.net/papers/htt.pdf.

23. P. Petrov and A. Orailoglu. Towards E ective Embedded Processors in Code- signs:

Customizable Partitioned Caches. In International Symposium on Hard- ware/Software

Codesign, 79{84, 2001.

24. P. Ranganathan, S.V. Adve and N.P. Jouppi. Recon gurable Caches and their Application to

Media Processing. In International Symposium on Computer Ar- chitecture (ISCA), 214{224,

2000.

25. A. Sturges and D. May. A Cache System. ST Microelectronics, US Patent Number 6,871,266,

2005.

26. W. Tang, A. Veidenbaum and R. Gupta. Architectural Adaptation for Power and

Performance. In ACM International Conference on Supercomputing (ICS), 145{154,

1999.

27. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri and H. Miyauchi. Cryptanalysis of

DES Implemented on Computers with Cache. In Cryptographic Hardware and Embedded

Systems (CHES), Springer-Verlag LNCS 2779, 62{76, 2003.

28. Y. Tsunoo and E. Tsujihara and K. Minematsu and H. Miyauchi. Cryptanal-

ysis of Block Ciphers Implemented on Computers with Cache. In International Symposium on

Information Theory and Its Applications (ISITA), 2002.

29. R.A. Wagner Compiler-Controlled Cache Mapping Rules Technical Report CS-

1995-31, Duke University, 1995.

30. D.A.B. Weikle and S.A. McKee and W.A. Wulf. Caches As Filters: A New Ap- proach to Cache

Analysis. In International Symposium on Modelling, Analysis, and Simulation of Computer

and Telecommunication Systems, 1998.

31. C. Zhang, F. Vahid and W. Najjar. A Highly Con gurable Cache Architecture For

Embedded Systems. In International Symposium on Computer Architecture (ISCA), 136{146,

2003.

http://www.daemonology.net/papers/htt.pdf

