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Abstract 
A Cache attacks on Intel x86 CPUs have drawn significant 
interest from the scientific community over the past ten 
years, and strong approaches to exploit cache side 
channels have been created. Modern smartphones, 
however, contain one or more multi-core ARM CPUs, 
which differ from Intel x86 CPUs in terms of cache 
organisation and instruction set. For non-rooted Android 
handsets, no cross-core cache attacks have been seen to 
yet. Here, we show how to overcome significant obstacles 
and execute the four most potent cross-core cache 
attacks—Prime+Probe, Flush+Reload, Evict+Reload, and 
Flush+Flush—on ARM-based devices that are not rooted. 
We demonstrate covert channels using our methods that 
surpass cutting-edge covert channels on Android by a 
factor of several. Additionally, we give challenges to to 
monitor tap and swipe events as well as keystrokes, and 
even derive the lengths of words entered on the 
touchscreen. Eventually, we are the first to attack 
cryptographic primitives implemented in Java. Our attacks 
work across CPUs and can even monitor cache activity in 
the ARM TrustZone from the normal world. The 
techniques we present can be used to attack hundreds of 
millions of Android devices. 
 

1 Introduction 

Cache attacks represent a powerful means of exploit- 
ing the different access times within the memory hi- 
erarchy of modern system architectures. Until re- 
cently, these attacks explicitly targeted cryptographic 
implementations, for instance, by means of cache tim- 
ing attacks [9] or the well-known Evict+Time and 
Prime+Probe techniques [43]. The seminal paper 
by Yarom and Falkner [60] introduced the so-called 
Flush+Reload attack, which allows an attacker to infer 
which specific parts of a binary are accessed by a vic- 
tim program with an unprecedented accuracy and prob- 
ing frequency. Recently, Gruss et al. [19] demonstrated 

the possibility to use Flush+Reload to automatically ex- 
ploit cache-based side channels via cache template at- 
tacks on Intel platforms. Flush+Reload does not only al- 
low for efficient attacks against cryptographic implemen- 
tations [8, 26, 56], but also to infer keystroke information 
and even to build keyloggers on Intel platforms [19]. In 
contrast to attacks on cryptographic algorithms, which 
are typically triggered multiple times, these attacks re- 
quire a significantly higher accuracy as an attacker has 
only one single chance to observe a user input event. 

Although a few publications about cache attacks on 
AES T-table implementations on mobile devices ex- 
ist [10, 50–52, 57], the more efficient cross-core attack 
techniques Prime+Probe, Flush+Reload, Evict+Reload, 
and Flush+Flush [18] have not been applied on smart- 
phones. In fact, there was reasonable doubt [60] whether 
these cross-core attacks can be mounted on ARM-based 
devices at all. In this work, we demonstrate that these 
attack techniques are applicable on ARM-based devices 
by solving the following key challenges systematically: 

1. Last-level caches are not inclusive on ARM and thus 
cross-core attacks cannot rely on this property. In- 
deed, existing cross-core attacks exploit the inclu- 
siveness of shared last-level caches [18, 19, 22, 24, 
35, 37, 38, 42, 60] and, thus, no cross-core attacks 
have been demonstrated on ARM so far. We present 
an approach that exploits coherence protocols and 
L1-to-L2 transfers to make these attacks applicable 
on mobile devices with non-inclusive shared last- 
level caches, irrespective of the cache organization.1 

2. Most modern smartphones have multiple CPUs that 
do not share a cache. However, cache coherence 
protocols allow CPUs to fetch cache lines from re- 
mote cores faster than from the main memory. We 
utilize this property to mount both cross-core and 
cross-CPU attacks. 

 
 

1Simultaneously to our work on ARM, Irazoqui et al. [25] devel- 
oped a technique to exploit cache coherence protocols on AMD x86 
CPUs and mounted the first cross-CPU cache attack. 
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3. Except ARMv8-A CPUs, ARM processors do not 
support a flush instruction. In these cases, a fast 
eviction strategy must be applied for high-frequency 
measurements. As existing eviction strategies are 
too slow, we analyze more than 4 200 eviction 
strategies for our test devices, based on Rowham- 
mer attack techniques [17]. 

4. ARM CPUs use a pseudo-random replacement pol- 
icy to decide which cache line to replace within a 
cache set. This introduces additional noise even for 
robust time-driven cache attacks [50, 52]. For the 
same reason, Prime+Probe has been an open chal- 
lenge [51] on ARM, as an attacker needs to predict 
which cache line will be replaced first and wrong 
predictions destroy measurements. We design re- 
access loops that interlock with a cache eviction 
strategy to reduce the effect of wrong predictions. 

5. Cycle-accurate timings require root access on 
ARM [3] and alternatives have not been evaluated so 
far. We evaluate different timing sources and show 
that cache attacks can be mounted in any case. 

Based on these building blocks, we demonstrate prac- 
tical and highly efficient cache attacks on ARM.2 We 
do not restrict our investigations to cryptographic im- 
plementations but also consider cache attacks as a 
means to infer other sensitive information—such as 
inter-keystroke timings or the length of a swipe action— 
requiring a significantly higher measurement accuracy. 
Besides these generic attacks, we also demonstrate that 
cache attacks can be used to monitor cache activity 
caused within the ARM TrustZone from the normal 
world. Nevertheless, we do not aim to exhaustively list 
possible exploits or find new attack vectors on crypto- 
graphic algorithms. Instead, we aim to demonstrate the 
immense attack potential of the presented cross-core and 
cross-CPU attacks on ARM-based mobile devices based 
on well-studied attack vectors. Our work allows to ap- 
ply existing attacks to millions of off-the-shelf Android 
devices without any privileges. Furthermore, our investi- 
gations show that Android still employs vulnerable AES 
T-table implementations. 

 
Contributions. The contributions of this work are: 

We demonstrate the applicability of highly efficient 
cache attacks like Prime+Probe, Flush+Reload, 
Evict+Reload, and Flush+Flush on ARM. 
Our attacks work irrespective of the actual cache or- 
ganization and, thus, are the first last-level cache 
attacks that can be applied cross-core and also 
cross-CPU on off-the-shelf ARM-based devices. 
More specifically, our attacks work against last- 

 

2Source code for ARMageddon attack examples can be found at 
https://github.com/IAIK/armageddon. 

level caches that are instruction-inclusive and data- 
non-inclusive as well as caches that are instruction- 
non-inclusive and data-inclusive. 
Our cache-based covert channel outperforms all ex- 
isting covert channels on Android by several orders 
of magnitude. 
We demonstrate the power of these attacks 
by attacking cryptographic implementations and 
by inferring more fine-grained information like 
keystrokes and swipe actions on the touchscreen. 

 
Outline. The remainder of this paper is structured as 
follows. In Section 2, we provide information on back- 
ground and related work. Section 3 describes the tech- 
niques that are the building blocks for our attacks. In 
Section 4, we demonstrate and evaluate fast cross-core 
and cross-CPU covert channels on Android. In Sec- 
tion 5, we demonstrate cache template attacks on user 
input events. In Section 6, we present attacks on crypto- 
graphic implementations used in practice as well the pos- 
sibility to observe cache activity of cryptographic com- 
putations within the TrustZone. We discuss countermea- 
sures in Section 7 and conclude this work in Section 8. 

 
2 Background and Related Work 

In this section, we provide the required preliminaries and 
discuss related work in the context of cache attacks. 

 
 CPU Caches 

Today’s CPU performance is influenced not only by the 
clock frequency but also by the latency of instructions, 
operand fetches, and other interactions with internal and 
external devices. In order to overcome the latency of 
system memory accesses, CPUs employ caches to buffer 
frequently used data in small and fast internal memories. 

Modern caches organize cache lines in multiple sets, 
which is also known as set-associative caches. Each 
memory address maps to one of these cache sets and ad- 
dresses that map to the same cache set are considered 
congruent. Congruent addresses compete for cache lines 
within the same set and a predefined replacement policy 
determines which cache line is replaced. For instance, 
the last generations of Intel CPUs employ an undocu- 

mented variant of least-recently used (LRU) replacement 
policy [17]. ARM processors use a pseudo-LRU replace- 
ment policy for the L1 cache and they support two dif- 
ferent cache replacement policies for L2 caches, namely 
round-robin and pseudo-random replacement policy. In 
practice, however, only the pseudo-random replacement 
policy is used due to performance reasons. Switching 

the cache replacement policy is only possible in privi- 

• 

• 

• 
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leged mode. The implementation details for the pseudo- 
random policy are not documented. 

CPU caches can either be virtually indexed or phys- 
ically indexed, which determines whether the index is 
derived from the virtual or physical address. A so-called 
tag uniquely identifies the address that is cached within 
a specific cache line. Although this tag can also be based 
on the virtual or physical address, most modern caches 
use physical tags because they can be computed simul- 
taneously while locating the cache set. ARM typically 
uses physically indexed, physically tagged L2 caches. 

CPUs have multiple cache levels, with the lower lev- 
els being faster and smaller than the higher levels. ARM 
processors typically have two levels of cache. If all cache 
lines from lower levels are also stored in a higher-level 
cache, the higher-level cache is called inclusive. If a 
cache line can only reside in one of the cache levels at 
any point in time, the caches are called exclusive. If the 
cache is neither inclusive nor exclusive, it is called non- 
inclusive. The last-level cache is often shared among 
all cores to enhance the performance upon transitioning 
threads between cores and to simplify cross-core cache 
lookups. However, with shared last-level caches, one 
core can (intentionally) influence the cache content of all 
other cores. This represents the basis for cache attacks 
like Flush+Reload [60]. 

In order to keep caches of multiple CPU cores or CPUs 
in a coherent state, so-called coherence protocols are em- 
ployed. However, coherence protocols also introduce 
exploitable timing effects, which has recently been ex- 
ploited by Irazoqui et al. [25] on x86 CPUs. 

In this paper, we demonstrate attacks on three smart- 
phones as listed in Table 1. The Krait 400 is an ARMv7- 
A CPU, the other two processors are ARMv8-A CPUs. 
However, the stock Android of the Alcatel One Touch 
Pop 2 is compiled for an ARMv7-A instruction set and 
thus ARMv8-A instructions are not used. We generically 
refer to ARMv7-A and ARMv8-A as “ARM architec- 
ture” throughout this paper. All devices have a shared L2 
cache. On the Samsung Galaxy S6, the flush instruction 
is unlocked by default, which means that it is available 
in userspace. Furthermore, all devices employ a cache 
coherence protocol between cores and on the Samsung 
Galaxy S6 even between the two CPUs [6]. 

 
 Shared Memory 

Read-only shared memory can be used as a means of 
memory usage optimization. In case of shared libraries it 
reduces the memory footprint and enhances the speed by 
lowering cache contention. The operating system imple- 
ments this behavior by mapping the same physical mem- 
ory into the address space of each process. As this mem- 
ory sharing mechanism is independent of how a file was 

opened or accessed, an attacker can map a binary to have 
read-only shared memory with a victim program. A sim- 
ilar effect is caused by content-based page deduplication 
where physical pages with identical content are merged. 

Android applications are usually written in Java and, 
thus, contain self-modifying code or just-in-time com- 
piled code. This code would typically not be shared. 

Since Android version 4.4 the Dalvik VM was gradu- 
ally replaced by the Android Runtime (ART). With ART, 
Java byte code is compiled to native code binaries [1] and 
thus can be shared too. 

 
 Cache Attacks 

Initially, cache timing attacks were performed on cryp- 
tographic algorithms [9, 30, 31, 40, 41, 44, 55]. For ex- 
ample, Bernstein [9] exploited the total execution time 
of AES T-table implementations. More fine-grained 
exploitations of memory accesses to the CPU cache 
have been proposed by Percival [45] and Osvik et al. 
[43]. More specifically, Osvik et al. formalized two con- 
cepts, namely Evict+Time and Prime+Probe, to deter- 
mine which specific cache sets were accessed by a victim 
program. Both approaches consist of three basic steps. 
Evict+Time: 

1. Measure execution time of victim program. 
2. Evict a specific cache set. 
3. Measure execution time of victim program again. 

Prime+Probe: 
1. Occupy specific cache sets. 
2. Victim program is scheduled. 
3. Determine which cache sets are still occupied. 
Both approaches allow an adversary to determine 

which cache sets are used during the victim’s compu- 
tations and have been exploited to attack cryptographic 
implementations [24, 35, 43, 54] and to build cross-VM 
covert channels [37]. Yarom and Falkner [60] proposed 
Flush+Reload, a significantly more fine-grained attack 
that exploits three fundamental concepts of modern sys- 
tem architectures. First, the availability of shared mem- 
ory between the victim process and the adversary. Sec- 
ond, last-level caches are typically shared among all 
cores. Third, Intel platforms use inclusive last-level 
caches, meaning that the eviction of information from the 
last-level cache leads to the eviction of this data from all 
lower-level caches of other cores, which allows any pro- 
gram to evict data from other programs on other cores. 
While the basic idea of this attack has been proposed by 
Gullasch et al. [21], Yarom and Falkner extended this 
idea to shared last-level caches, allowing cross-core at- 
tacks. Flush+Reload works as follows. 
Flush+Reload: 

1. Map binary (e.g., shared object) into address space. 
2. Flush a cache line (code or data) from the cache. 
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Table 1: Test devices used in this paper. 
 
 

 
 

Alcatel One 
Touch Pop 2 

 
 

Qualcomm 
Snapdragon 410 

 
 

Cortex-A53 (4) 
1.2 GHz 

 
4-way, 64 sets 

4  32 KB, 
4-way, 128 sets 

 
 

512 KB, 
16-way, 512 sets 

 
 

instruction-inclusive, 
data-non-inclusive 

Samsung Samsung Exynos 
Cortex-A53 (4) 4  32 KB, 256 KB, instruction-inclusive, 
1.5 GHz 4-way, 128 sets 16-way, 256 sets data-non-inclusive 

Galaxy S6 7 Octa 7420 Cortex-A57 (4) 4  32 KB, 2 048 KB, instruction-non-inclusive, 
2.1 GHz 2-way, 256 sets 16-way, 2 048 sets data-inclusive 

 

3. Schedule the victim program. 
4. Check if the corresponding line from step 2 has 

been loaded by the victim program. 

Thereby, Flush+Reload allows an attacker to deter- 
mine which specific instructions are executed and also 
which specific data is accessed by the victim program. 
Thus, rather fine-grained attacks are possible and have 
already been demonstrated against cryptographic im- 
plementations [22, 27, 28]. Furthermore, Gruss et al. 
[19] demonstrated the possibility to automatically ex- 

ploit cache-based side-channel information based on 
the Flush+Reload approach. Besides attacking crypto- 

graphic implementations like AES T-table implementa- 
tions, they showed how to infer keystroke information 
and even how to build a keylogger by exploiting the 
cache side channel. Similarly, Oren et al. [42] demon- 

strated the possibility to exploit cache attacks on Intel 
platforms from JavaScript and showed how to infer vis- 
ited websites and how to track the user’s mouse activity. 

Gruss et al. [19] proposed the Evict+Reload technique 
that replaces the flush instruction in Flush+Reload by 
eviction. While it has no practical application on x86 
CPUs, we show that it can be used on ARM CPUs. Re- 
cently, Flush+Flush [18] has been proposed. Unlike 
other techniques, it does not perform any memory ac- 
cess but relies on the timing of the flush instruction to 
determine whether a line has been loaded by a victim. 
We show that the execution time of the ARMv8-A flush 
instruction also depends on whether or not data is cached 

and, thus, can be used to implement this attack. 

While the attacks discussed above have been proposed 
and investigated for Intel processors, the same attacks 
were considered not applicable to modern smartphones 
due to differences in the instruction set, the cache or- 
ganization [60], and in the multi-core and multi-CPU 
architecture. Thus, only same-core cache attacks have 
been demonstrated on smartphones so far. For instance, 
Weiß et al. [57] investigated Bernstein’s cache-timing at- 
tack [9] on a Beagleboard employing an ARM Cortex- 
A8 processor. Later on, Weiß et al. [58] investigated this 
timing attack in a multi-core setting on a development 

board. As Weiß et al. [57] claimed that noise makes 
the attack difficult, Spreitzer and Plos [52] investigated 
the applicability of Bernstein’s cache-timing attack on 
different ARM Cortex-A8 and ARM Cortex-A9 smart- 
phones running Android. Both investigations [52, 57] 
confirmed that timing information is leaking, but the at- 
tack takes several hours due to the high number of mea- 
surement samples that are required, i.e., about 230 AES 
encryptions.    Later  on,  Spreitzer  and  Gérard  [50]  im- 
proved upon these results and managed to reduce the key 
space to a complexity which is practically relevant. 

Besides Bernstein’s attack, another attack against AES 
T-table implementations has been proposed by Bog- 
danov et al. [10], who exploited so-called wide collisions 
on an ARM9 microprocessor. In addition, power analysis 
attacks [13] and electromagnetic emanations [14] have 
been used to visualize cache accesses during AES com- 
putations on ARM microprocessors. Furthermore, Spre- 
itzer and Plos [51] implemented Evict+Time [43] in or- 
der to attack an AES T-table implementation on Android- 
based smartphones. However, so far only cache attacks 
against AES T-table implementations have been consid- 
ered on smartphone platforms and none of the recent ad- 
vances have been demonstrated on mobile devices. 

 
3 ARMageddon Attack Techniques 

We consider a scenario where an adversary attacks a 
smartphone user by means of a malicious application. 
This application does not require any permission and, 
most importantly, it can be executed in unprivileged 
userspace and does not require a rooted device. As our 
attack techniques do not exploit specific vulnerabilities 
of Android versions, they work on stock Android ROMs 
as well as customized ROMs in use today. 

 
 Defeating the Cache Organization 

In this section, we tackle the aforementioned challenges 
1 and 2, i.e., the last-level cache is not inclusive and mul- 
tiple processors do not necessarily share a cache level. 

Device SoC CPU (cores) L1 caches L2 cache Inclusiveness  

OnePlus 
One 

Qualcomm Krait 400 (2) 
Snapdragon 801 2.5 GHz 

2× 16 KB, 2 048 KB, 
8-way, 2 048 sets 

non-inclusive  

 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 
ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 2021 

Page | 1756                                                                                       Copyright @ 2021 Authors 
 

Hit (same core) Hit (cross-core) 

·104 
Miss (same core) Miss (cross-core) 

 
 

 
 
 
 

 
Figure 1: Cross-core instruction cache eviction through 
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data accesses. 

 
When it comes to caches, ARM CPUs are very hetero- 

geneous compared to Intel CPUs. For example, whether 
or not a CPU has a second-level cache can be decided by 
the manufacturer. Nevertheless, the last-level cache on 
ARM devices is usually shared among all cores and it can 
have different inclusiveness properties for instructions 
and data. Due to cache coherence, shared memory is 
kept in a coherent state across cores and CPUs. This is of 
importance when measuring timing differences between 
cache accesses and memory accesses (cache misses), as 
fast remote-cache accesses are performed instead of slow 
memory accesses [6]. In case of a non-coherent cache, a 
cross-core attack is not possible but an attacker can run 
the spy process on all cores simultaneously and thus fall 
back to a same-core attack. However, we observed that 
caches are coherent on all our test devices. 

To perform a cross-core attack we load enough data 
into the cache to fully evict the corresponding last-level 
cache set. Thereby, we exploit that we can fill the last- 
level cache directly or indirectly depending on the cache 
organization. On the Alcatel One Touch Pop 2, the last- 
level cache is instruction-inclusive and thus we can evict 
instructions from the local caches of the other core. Fig- 
ure 1 illustrates such an eviction. In step 1, an instruc- 
tion is allocated to the last-level cache and the instruc- 
tion cache of one core. In step 2, a process fills its core’s 
data cache, thereby evicting cache lines into the last-level 
cache. In step 3, the process has filled the last-level cache 
set using only data accesses and thereby evicts the in- 
structions from instruction caches of other cores as well. 

We access cache lines multiple times to perform trans- 
fers between L1 and L2 cache. Thus, more and more 
addresses used for eviction are cached in either L1 or L2. 
As ARM CPUs typically have L1 caches with a very low 
associativity, the probability of eviction to L2 through 
other system activity is high. Using an eviction strategy 
that performs frequent transfers between L1 and L2 in- 
creases this probability further. Thus, this approach also 

works for other cache organizations to perform cross- 
core and cross-CPU cache attacks. Due to the cache co- 
herence protocol between the CPU cores [6, 33], remote- 
core fetches are faster than memory accesses and thus 
can be distinguished from cache misses. For instance, 

Figure 2: Histograms of cache hits and cache misses 
measured same-core and cross-core on the OnePlus One. 

 
Figure 2 shows the cache hit and miss histogram on the 
OnePlus One. The cross-core access introduces a latency 
of 40 CPU cycles on average. However, cache misses 
take more than 500 CPU cycles on average. Thus, cache 
hits and misses are clearly distinguishable based on a sin- 
gle threshold value. 

 
 Fast Cache Eviction 

In this section, we tackle the aforementioned challenges 
3 and 4, i.e., not all ARM processors support a flush in- 
struction, and the replacement policy is pseudo-random. 

There are two options to evict cache lines: (1) the 
flush instruction or (2) evict data with memory accesses 
to congruent addresses, i.e., addresses that map to the 
same cache set. As the flush instruction is only available 
on the Samsung Galaxy S6, we need to rely on eviction 
strategies for the other devices and, therefore, to defeat 
the replacement policy. The L1 cache in Cortex-A53 and 
Cortex-A57 has a very small number of ways and em- 
ploys a least-recently used (LRU) replacement policy [5]. 
However, for a full cache eviction, we also have to evict 
cache lines from the L2 cache, which uses a pseudo- 
random replacement policy. 

 
Eviction strategies. Previous approaches to evict data 
on Intel x86 platforms either have too much over- 
head [23] or are only applicable to caches implement- 
ing an LRU replacement policy [35, 37, 42]. Spreitzer 
and Plos [51] proposed an eviction strategy for ARMv7- 
A CPUs that requires to access more addresses than 
there are cache lines per cache set, due to the pseudo- 
random replacement policy. Recently, Gruss et al. [17] 
demonstrated how to automatically find fast eviction 
strategies on Intel x86 architectures. We show that 
their algorithm is applicable to ARM CPUs as well. 
Thereby, we establish eviction strategies in an automated 
way and significantly reduce the overhead compared to 
[51]. We evaluated more than 4 200 access patterns on 
our smartphones and identified the best eviction strate- 
gies. Even though the cache employs a random replace- 
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Flush (address cached) 

Flush (address not cached) 

Table 2: Different eviction strategies on the Krait 400. Table 3: Different eviction strategies on the Cortex-A53. 
 

N A D Cycles Eviction rate  N A D Cycles Eviction rate 

- - - 549 100.00%  - - - 767 100.00% 
11 2 2 1 578 100.00%  23 2 5 6 209 100.00% 
12 1 3 2 094 100.00%  23 4 6 16 912 100.00% 
13 1 5 2 213 100.00%  22 1 6 5 101 99.99% 
16 1 1 3 026 100.00%  21 1 6 4 275 99.93% 
24 1 1 4 371 100.00%  20 4 6 13 265 99.44% 
13 1 2 2 372 99.58%  800 1 1 142 876 99.10% 
11 1 3 1 608 80.94%  200 1 1 33 110 96.04% 
11 4 1 1 948 58.93%  100 1 1 15 493 89.77% 

10 2 2 1 275 51.12%  48 1 1 6 517 70.78% 

 

 
ment policy, average eviction rate and average execu- 
tion time are reproducible. Eviction sets are computed 
based on physical addresses, which can be retrieved via 

/proc/self/pagemap as current Android versions al- 
low access to these mappings to any unprivileged app 
without any permissions. Thus, eviction patterns and 
eviction sets can be efficiently computed. 
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500 600 

We applied the algorithm of Gruss et al. [17] to a set 
of physically congruent addresses. Table 2 summarizes 
different eviction strategies, i.e., loop parameters, for the 
Krait 400. N denotes the total eviction set size (length of 
the loop), A denotes the shift offset (loop increment) to 
be applied after each round, and D denotes the number of 
memory accesses in each iteration (loop body). The col- 
umn cycles states the average execution time in CPU cy- 
cles over 1 million evictions and the last column denotes 
the average eviction rate. The first line in Table 2 shows 
the average execution time and the average eviction rate 
for the privileged flush instruction, which gives the best 
result in terms of average execution time (549 CPU cy- 
cles). We evaluated 1863 different strategies and our best 

identified eviction strategy (N = 11, A = 2, D = 2) also 
achieves an average eviction rate of 100% but takes 1578 
CPU cycles. Although a strategy accessing every address 

in the eviction set only once (A = 1, D = 1, also called 
LRU eviction) performs significantly fewer memory ac- 
cesses, it consumes more CPU cycles. For an average 
eviction rate of 100%, LRU eviction requires an eviction 
set size of at least 16. The average execution time then 
is 3026 CPU cycles. Considering the eviction strategy 
used in [51] that takes 4371 CPU cycles, clearly demon- 
strates the advantage of our optimized eviction strategy 
that takes only 1578 CPU cycles. 

We performed the same evaluation with 2295 different 
strategies on the ARM Cortex-A53 in our Alcatel One 
Touch Pop 2 test system and summarize them in Table 3. 

For the best strategy we found (N = 21, A = 1, D = 6), we 
measured an average eviction rate of 99.93% and an av- 
erage execution time of 4275 CPU cycles. We observed 

that LRU eviction (A = 1, D = 1) on the ARM Cortex- 

Measured execution time in CPU cycles 

 

Figure 3: Histograms of the execution time of the flush 
operation on cached and not cached addresses measured 
on the Samsung Galaxy S6. 

 

 
A53 would take 28 times more CPU cycles to achieve an 
average eviction rate of only 99.10%, thus it is not suit- 
able for attacks on the last-level cache as used in previous 
work [51]. The reason for this is that data can only be al- 
located to L2 cache by evicting it from the L1 cache on 
the ARM Cortex-A53. Therefore, it is better to reaccess 
the data that is already in the L2 cache and gradually add 
new addresses to the set of cached addresses instead of 
accessing more different addresses. 

On the ARM Cortex-A57 the userspace flush in- 
struction was significantly faster in any case. Thus, 
for Flush+Reload we use the flush instruction and for 
Prime+Probe the eviction strategy. Falling back to 
Evict+Reload is not necessary on the Cortex-A57. Sim- 
ilarly to recent Intel x86 CPUs, the execution time of the 
flush instruction on ARM depends on whether or not the 
value is cached, as shown in Figure 3. The execution 
time is higher if the address is cached and lower if the 
address is not cached. This observation allows us to dis- 
tinguish between cache hits and cache misses depending 
on the timing behavior of the flush instruction, and there- 
fore to perform a Flush+Flush attack. Thus, in case of 
shared memory between the victim and the attacker, it is 
not even required to evict and reload an address in order 
to exploit the cache side channel. 
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A note on Prime+Probe.  Finding a fast eviction strat- 

egy for Prime+Probe on architectures with a random 
replacement policy is not as straightforward as on In- 
tel x86. Even in case of x86 platforms, the problem of 
cache trashing has been discussed by Tromer et al. [54]. 
Cache trashing occurs when reloading (probing) an ad- 
dress evicts one of the addresses that are to be accessed 
next. While Tromer et al. were able to overcome this 
problem by using a doubly-linked list that is accessed 
forward during the prime step and backwards during the 
probe step, the random replacement policy on ARM also 
contributes to the negative effect of cache trashing. 

We analyzed the behavior of the cache and designed 
a prime step and a probe step that work with a smaller 
set size to avoid set thrashing. Thus, we set the evic- 
tion set size to 15 on the Alcatel One Touch Pop 2. As 
we run the Prime+Probe attack in a loop, exactly 1 way 
in the L2 cache will not be occupied after a few attack 
rounds. We might miss a victim access in 1 of the cases, 
which however is necessary as otherwise we would not 
be able to get reproducible measurements at all due to set 
thrashing. If the victim replaces one of the 15 ways occu- 
pied by the attacker, there is still one free way to reload 
the address that was evicted. This reduces the chance of 
set thrashing significantly and allows us to successfully 
perform Prime+Probe on caches with a random replace- 
ment policy. 

 Accurate Unprivileged Timing 

In this section, we tackle the aforementioned challenge 5, 

i.e., cycle-accurate timings require root access on ARM. 

In order to distinguish cache hits and cache misses, 

timing sources or dedicated performance counters can be 
used. We focus on timing sources, as cache misses have 
a significantly higher access latency and timing sources 
are well studied on Intel x86 CPUs. Cache attacks on 
x86 CPUs employ the unprivileged rdtsc instruction 

to obtain a sub-nanosecond resolution timestamp. The 
ARMv7-A architecture does not provide an instruction 
for this purpose. Instead, the ARMv7-A architecture 
has a performance monitoring unit that allows to mon- 
itor CPU activity. One of these performance counters— 
denoted as cycle count register (PMCCNTR)—can be 
used to distinguish cache hits and cache misses by re- 
lying on the number of CPU cycles that passed during 
a memory access. However, these performance counters 
are not accessible from userspace by default and an at- 
tacker would need root privileges. 

We broaden the attack surface by exploiting timing 
sources that are accessible without any privileges or per- 
missions. We identified three possible alternatives for 
timing measurements. 

 
  

Hit (PMCCNTR) Hit (clock gettime×.15) 

      
Miss (PMCCNTR) Miss (clock gettime×.15) 

    Hit (syscall×.25)  Hit (counter thread×.05) 
Miss (syscall×.25) Miss (counter thread×.05) 

 

4 

 
2 

 
0

0 20 40 60 80 100   120   140   160   180   200 

Measured access time (scaled) 

 

Figure 4: Histogram of cross-core cache hits/misses on 
the Alcatel One Touch Pop 2 using different methods. 
X-values are scaled for visual representation. 

Unprivileged syscall. The perf_event_open 
syscall is an abstract layer to access perfor- 
mance information through the kernel indepen- 
dently of the underlying hardware. For instance, 
PERF_COUNT_HW_CPU_CYCLES returns an accurate 
cycle count including a minor overhead due to the 
syscall. The availability of this feature depends on the 
Android kernel configuration, e.g., the stock kernel on 
the Alcatel One Touch Pop 2 as well as the OnePlus 
One provide this feature by default. Thus, in contrast 
to previous work [51], the attacker does not have to 
load a kernel module to access this information as the 
perf_event_open syscall can be accessed without 
any privileges or permissions. 

 
POSIX function. Another alternative to obtain suf- 

ficiently accurate timing information is the POSIX 
function   clock_gettime(),    with   an   accuracy 
in the range of microseconds to nanoseconds. 
Similar information can also be obtained from 
/proc/timer_list. 

 

Dedicated thread timer. If no interface with sufficient 
accuracy is available, an attacker can run a thread 
that increments a global variable in a loop, provid- 
ing a fair approximation of a cycle counter. Our ex- 
periments show that this approach works reliably on 
smartphones as well as recent x86 CPUs. The resolu- 
tion of this threaded timing information is as high as 
with the other methods. 
In Figure 4 we show the cache hit and miss histogram 

based on the four different methods, including the cycle 
count register, on a Alcatel One Touch Pop 2. Despite the 
latency and noise, cache hits and cache misses are clearly 
distinguishable with all approaches. Thus, all methods 
can be used to implement cache attacks. Determining 
the best timing method on the device under attack can be 
done in a few seconds during an online attack. 

N
u

m
b

er
 o

f 
ac

ce
ss

es
 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 

ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 202 

Page | 1759                                                                                       Copyright @ 2021 Authors 
 

4 High Performance Covert Channels 

To evaluate the performance of our attacks, we measure 
the capacity of cross-core and cross-CPU cache covert 
channels. A covert channel enables two unprivileged ap- 
plications on a system to communicate with each other 
without using any data transfer mechanisms provided by 
the operating system. This communication evades the 
sandboxing concept and the permission system (cf. col- 
lusion attacks [36]). Both applications were running in 
the background while the phone was mostly idle and an 
unrelated app was running as the foreground application. 

Our covert channel is established on addresses of a 
shared library that is used by both the sender and the re- 
ceiver. While both processes have read-only access to the 
shared library, they can transmit information by loading 
addresses from the shared library into the cache or evict- 
ing (flushing) it from the cache, respectively. 

The covert channel transmits packets of n-bit data, an 
s-bit sequence number, and a c-bit checksum that is com- 
puted over data and sequence number. The sequence 
number is used to distinguish consecutive packets and 
the checksum is used to check the integrity of the packet. 
The receiver acknowledges valid packets by responding 
with an s-bit sequence number and an x-bit checksum. 
By adjusting the sizes of checksums and sequence num- 
bers the error rate of the covert channel can be controlled. 

Each bit is represented by one address in the shared 
library, whereas no two addresses are chosen that map 
to the same cache set. To transmit a bit value of 1, the 
sender accesses the corresponding address in the library. 
To transmit a bit value of 0, the sender does not access 
the corresponding address, resulting in a cache miss on 
the receiver’s side. Thus, the receiving process observes 
a cache hit or a cache miss depending on the memory ac- 
cess performed by the sender. The same method is used 
for the acknowledgements sent by the receiving process. 

We implemented  this covert channel using 
Evict+Reload, Flush+Reload, and Flush+Flush on 

our smartphones. The results are summarized in Table 4. 
On the Samsung Galaxy S6, we achieve a cross-core 

transmission rate of 1 140 650 bps at an error rate of 
1.10%. This is 265 times faster than any existing covert 
channel on smartphones. In a cross-CPU transmission 
we achieve a transmission rate of 257 509 bps at an error 
rate of 1.83%. We achieve a cross-core transition rate of 
178 292 bps at an error rate of 0.48% using Flush+Flush 
on the Samsung Galaxy S6. On the Alcatel One Touch 

Pop 2 we achieve a cross-core transmission rate of 
13 618 bps at an error rate of 3.79% using Evict+Reload. 
This is still 3 times faster than previous covert channels 

on smartphones. The covert channel is significantly 
slower on the Alcatel One Touch Pop 2 than on the 
Samsung Galaxy S6 because the hardware is much 

slower, Evict+Reload is slower than Flush+Reload, and 
retransmission might be necessary in 0.14% of the cases 
where eviction is not successful (cf. Section 3.2). On the 
older OnePlus One we achieve a cross-core transmission 
rate of 12 537 bps at an error rate of 5.00%, 3 times faster 
than previous covert channels on smartphones. The 
reason for the higher error rate is the additional timing 
noise due to the cache coherence protocol performing a 
high number of remote-core fetches. 

 
5 Attacking User Input on Smartphones 

In this section we demonstrate cache side-channel at- 
tacks on Android smartphones. We implement cache 
template attacks [19] to create and exploit accu- 
rate cache-usage profiles using the Evict+Reload or 
Flush+Reload attack. Cache template attacks have a pro- 
filing phase and an exploitation phase. In the profiling 
phase, a template matrix is computed that represents how 
many cache hits occur on a specific address when trig- 
gering a specific event. The exploitation phase uses this 
matrix to infer events from cache hits. 

To perform cache template attacks, an attacker has 
to map shared binaries or shared libraries as read-only 
shared memory into its own address space. By us- 
ing shared libraries, the attacker bypasses any potential 
countermeasures taken by the operating system, such as 
restricted access to runtime data of other apps or address 
space layout randomization (ASLR). The attack can even 
be performed online on the device under attack if the 
event can be simulated. 

Triggering the actual event that an attacker wants to 
spy on might require either (1) an offline phase or (2) 
privileged access. For instance, in case of a keylogger, 
the attacker can gather a cache template matrix offline 
for a specific version of a library, or the attacker relies on 
privileged access of the application (or a dedicated per- 
mission) in order to be able to simulate events for gath- 
ering the cache template matrix. However, the actual ex- 
ploitation of the cache template matrix to infer events 
neither requires privileged access nor any permission. 

 
 Attacking a Shared Library 

Just as Linux, Android uses a large number of shared li- 
braries, each with a size of up to several megabytes. We 
inspected all available libraries on the system by man- 
ually scanning the names and identified libraries that 
might be responsible for handling user input, e.g., the 
libinput.so library. Without loss of generality, we re- 

stricted the set of attacked libraries since testing all li- 
braries would have taken a significant amount of time. 
Yet, an adversary could exhaustively probe all libraries. 
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Table 4: Comparison of covert channels on Android. 
 

Work Type Bandwidth [bps] Error rate 

Ours (Samsung Galaxy S6) Flush+Reload, cross-core 1 140 650 1.10% 
Ours (Samsung Galaxy S6) Flush+Reload, cross-CPU 257 509 1.83% 
Ours (Samsung Galaxy S6) Flush+Flush, cross-core 178 292 0.48% 
Ours (Alcatel One Touch Pop 2) Evict+Reload, cross-core 13 618 3.79% 
Ours (OnePlus One) Evict+Reload, cross-core 12 537 5.00% 
Marforio et al. [36] Type of Intents 4 300 – 
Marforio et al. [36] UNIX socket discovery 2 600 – 
Schlegel et al. [48] File locks 685 – 
Schlegel et al. [48] Volume settings 150 – 

Schlegel et al. [48] Vibration settings 87 – 

 

We automated the search for addresses in these shared 
libraries and after identifying addresses, we monitored 
them in order to infer user input events. For in- 
stance, in the profiling phase on libinput.so, we sim- 
ulated events via the android-debug bridge (adb shell) 
with two different methods. The first method uses 
the input command line tool to simulate user input 
events. The second method is writing event messages 
to /dev/input/event*. Both methods can run entirely 

key 

longpress 
swipe 

tap 
text 

 

 
 

 
Addresses 

on the device for instance in idle periods while the user is 
not actively using the device. As the second method only 
requires a write() statement it is significantly faster, but 
it is also more device specific. Therefore, we used the 
input command line except when profiling differences 
between different letter keys. While simulating these 
events, we simultaneously probed all addresses within 
the libinput.so library, i.e., we measured the number 
of cache hits that occurred on each address when trig- 
gering a specific event. As already mentioned above, the 
simulation of some events might require either an offline 
phase or specific privileges in case of online attacks. 

Figure 5 shows part of the cache template matrix 
for libinput.so. We triggered the following events: 
key events including the power button (key), long touch 
events (longpress), swipe events, touch events (tap), and 
text input events (text) via the input tool as often as pos- 
sible and measured each address and event for one sec- 
ond. The cache template matrix clearly reveals addresses 
with high cache-hit rates for specific events. Darker col- 
ors represent addresses with higher cache-hit rates for a 
specific event and lighter colors represent addresses with 
lower cache-hit rates. Hence, we can distinguish differ- 
ent events based on cache hits on these addresses. 

We verified our results by monitoring the identified 
addresses while operating the smartphone manually, i.e., 
we touched the screen and our attack application reliably 
reported cache hits on the monitored addresses. For in- 
stance, address 0x11040 of libinput.so can be used to 
distinguish tap actions and swipe actions on the screen of 
the Alcatel One Touch Pop 2. Tap actions cause a smaller 

Figure 5: Cache template matrix for libinput.so. 
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Figure 6: Monitoring address 0x11040 of libinput.so 
on the Alcatel One Touch Pop 2 reveals taps and swipes. 

 

number of cache hits than swipe actions. Swipe actions 
cause cache hits in a high frequency as long as the screen 
is touched. Figure 6 shows a sequence of 3 tap events, 
3 swipe events, 3 tap events, and 2 swipe events. These 
events can be clearly distinguished due to the fast access 
times. The gaps mark periods of time where our program 
was not scheduled on the CPU. Events occurring in those 
periods can be missed by our attack. 

Swipe input allows to enter words by swiping over 
the soft-keyboard and thereby connecting single charac- 
ters to form a word. Since we are able to determine the 
length of swipe movements, we can correlate the length 
of the swipe movement with the actual word length in 
any Android application or system interface that uses 
swipe input without any privileges. Furthermore, we can 
determine the actual length of the unlock pattern for the 
pattern-unlock mechanism. 
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Figure 7 shows a user input sequence consisting of 3 
tap events and 3 swipe events on the Samsung Galaxy 
S6.   The attack was conducted using Flush+Reload. 
An attacker can monitor every single event. Taps and 
swipes can be distinguished based on the length of the 
cache hit phase. The length of a swipe movement can 
be determined from the same information. Figure 8 
shows the same experiment on the OnePlus One using 

alphabet 

enter 

space 

backspace 

 

 
 
 

 
Addresses 

Evict+Reload. Thus, our attack techniques work on co- 
herent non-inclusive last-level caches. 

 
400 
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Figure 9: Cache template matrix for the default AOSP 
keyboard. 
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Figure 7: Monitoring address 0xDC5C of libinput.so 
on the Samsung Galaxy S6 reveals tap and swipe events. 
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Figure 8: Monitoring address 0xBFF4 of libinput.so 
on the OnePlus One reveals tap and swipe events. 

 

 
 Attacking ART Binaries 

Instead of attacking shared libraries, it is also possible 
to apply this attack to ART (Android Runtime) executa- 
bles [1] that are compiled ahead of time. We used this 
attack on the default AOSP keyboard and evaluated the 
number of accesses to every address in the optimized ex- 
ecutable that responds to an input of a letter on the key- 
board. It is possible to find addresses that correspond to 
a key press and more importantly to distinguish between 
taps and key presses. Figure 9 shows the correspond- 
ing cache template matrix. We summarize the letter keys 
in one line (alphabet) as they did not vary significantly. 
These addresses can be used to monitor key presses on 
the keyboard. We identified an address that corresponds 
only to letters on the keyboard and hardly on the space 
bar or the return button. With this information it is pos- 

 
Figure 10: Evict+Reload on 2 addresses in custpack@ 
app@withoutlibs@LatinIME.apk@classes.dex       on 
the Alcatel One Touch Pop 2 while entering the sentence 
“this is a message”. 

 

sible to precisely determine the length of single words 
entered using the default AOSP keyboard. 

We illustrate the capability of detecting word lengths 
in Figure 10. The blue line shows the timing measure- 
ments for the address identified for keys in general, the 
red dots represent measurements of the address for the 
space key. The plot shows that we can clearly determine 
the length of entered words and monitor user input accu- 
rately over time. 

 
 Discussion and Impact 

Our proof-of-concept attacks exploit shared libraries and 
binaries from Android apk files to infer key strokes. The 
cache template attack technique we used for these attacks 
is generic and can also be used to attack any other li- 
brary. For instance, there are various libraries that han- 
dle different hardware modules and software events on 
the device, such as GPS, Bluetooth, camera, NFC, vi- 
brator, audio and video decoding, web and PDF viewers. 
Each of these libraries contains code that is executed and 
data that is accessed when the device is in use. Thus, 
an attacker can perform a cache template attack on any 
of these libraries and spy on the corresponding device 
events. For instance, our attack can be used to monitor 
activity of the GPS sensor, bluetooth, or the camera. An 
attacker can record such user activities over time to learn 
more about the user. 
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We can establish inter-keystroke timings at an ac- 
curacy as high as the accuracy of cache side-channel 
attacks on keystrokes on x86 systems with a physi- 
cal keyboard. Thus, the inter-keystroke timings can 
be used to infer entered words, as has been shown by 
Zhang et al. [61]. Our attack even has a higher res- 
olution than [61], i.e., it is sub-microsecond accurate. 
Furthermore, we can distinguish between keystrokes on 
the soft-keyboard and generic touch actions outside the 
soft-keyboard. This information can be used to enhance 
sensor-based keyloggers that infer user input on mobile 
devices by exploiting, e.g., the accelerometer and the gy- 
roscope [7,11,12,39,59] or the ambient-light sensor [49]. 
However, these attacks suffer from a lack of knowledge 
when exactly a user touches the screen. Based on our at- 
tack, these sensor-based keyloggers can be improved as 
our attack allows to infer (1) the exact time when the user 
touches the screen, and (2) whether the user touches the 
soft-keyboard or any other region of the display. 

Our attacks only require the user to install a malicious 
app on the smartphone. However, as shown by Oren et al. 
[42], Prime+Probe attacks can even be performed from 
within browser sandboxes through remote websites using 
JavaScript on Intel platforms. Gruss et al. [16] showed 
that JavaScript timing measurements in web browsers 
on ARM-based smartphones achieve a comparable ac- 
curacy as on Intel platforms. Thus, it seems likely that 
Prime+Probe through a website works on ARM-based 
smartphones as well. We expect that such attacks will be 
demonstrated in future work. The possibility of attack- 
ing millions of users shifts the focus of cache attacks to 
a new range of potential malicious applications. 

In our experiments with the predecessor of ART, the 
Dalvik VM, we found that the just-in-time compilation 
effectively prevents Evict+Reload and Flush+Reload at- 
tacks. The just-in-time compiled code is not shared and 
thus the requirements for these two attacks are not met. 
However, Prime+Probe attacks work on ART binaries 
and just-in-time compiled Dalvik VM code likewise. 

6 Attack on Cryptographic Algorithms 

In this section we show how Flush+Reload, 
Evict+Reload, and Prime+Probe can be used to 
attack AES T-table implementations that are still in use 
on Android devices. Furthermore, we demonstrate the 
possibility to infer activities within the ARM TrustZone 
by observing the cache activity using Prime+Probe. We 
perform all attacks cross-core and in a synchronized 
setting, i.e., the attacker triggers the execution of cryp- 
tographic algorithms by the victim process. Although 
more sophisticated attacks are possible, our goal is 
to demonstrate that our work enables practical cache 
attacks on smartphones. 

 AES T-Table Attacks 

Many cache attacks against AES T-table implementa- 
tions have been demonstrated and appropriate counter- 
measures have already been proposed. Among these 
countermeasures are, e.g., so-called bit-sliced implemen- 
tations [29, 32, 46]. Furthermore, Intel addressed the 
problem by adding dedicated instructions for AES [20] 
and ARM also follows the same direction with the 
ARMv8 instruction set [4]. However, our investiga- 
tions showed that Bouncy Castle, a crypto library widely 
used in Android apps such as the WhatsApp messen- 
ger [2], still uses a T-table implementation. Moreover, 
the OpenSSL library, which is the default crypto provider 
on recent Android versions, uses T-table implementa- 
tions until version 1.0.1.3 This version is still officially 
supported and commonly used on Android devices, e.g., 
the Alcatel One Touch Pop 2. T-tables contain the pre- 
computed AES round transformations, allowing to per- 
form encryptions and decryptions by simple XOR oper- 
ations. For instance, let pi denote the plaintext bytes, 

ki the initial key bytes, and si = pi ki the initial state 
bytes. The initial state bytes are used to retrieve pre- 
computed T-table elements for the next round. If an at- 
tacker knows a plaintext byte pi and the accessed ele- 
ment of the T-table, it is possible to recover the key bytes 

ki = si pi. However, it is only possible to derive the 
upper 4 bits of ki through our cache attack on a device 
with a cache line size of 64 bytes. This way, the attacker 
can learn 64 key bits. In second-round and last-round at- 
tacks the key space can be reduced further. For details 
about the basic attack strategy we refer to the work of 
Osvik et al. [43, 54]. Although we successfully mounted 
an Evict+Reload attack on the Alcatel One Touch Pop 
2 against the OpenSSL AES implementation, we do not 
provide further insights as we are more interested to per- 
form the first cache attack on a Java implementation. 
Attack on Bouncy Castle. Bouncy Castle is imple- 
mented in Java and provides various cryptographic prim- 
itives including AES. As Bouncy Castle 1.5 still employs 
AES T-table implementations by default, all Android de- 
vices that use this version are vulnerable to our presented 
attack. To the best of our knowledge, we are the first to 
show an attack on a Java implementation. 

During the initialization of Bouncy Castle, the T-tables 
are copied to a local private memory area. Therefore, 
these copies are not shared among different processes. 
Nevertheless, we demonstrate that Flush+Reload and 
Evict+Reload are efficient attacks on such an implemen- 

 

3Later versions use a bit-sliced implementation if ARM NEON is 
available or dedicated AES instructions if ARMv8-A instructions are 
available. Otherwise, a T-table implementation is used. This is also the 
case for Google’s BoringSSL library. 



 

 

 

Dogo Rangsang Research Journal                                                       UGC Care Group I Journal 

ISSN : 2347-7180                                                                          Vol-08 Issue-14 No. 04, April 202 

Page | 1763                                                                                       Copyright @ 2021 Authors 
 

· · 
· 

⊕ 

6,000 

 
4,000 

 

 
 
 
 

 
Plaintext byte values 

 
 
 
 

 
Plaintext byte values 

2,000 

 
0 

 
 
 

1,500 2,000 2,500 3,000 3,500 

Execution time in CPU cycles 

 

Figure 11: Attack on Bouncy Castle’s AES using 
Evict+Reload on the Alcatel One Touch Pop 2 (left) and 
Flush+Reload on the Samsung Galaxy S6 (right). 

Figure 12: Histogram of Prime+Probe timings depend- 
ing on whether the victim accesses congruent memory 
on the ARM Cortex-A53. 

 

tation if shared memory is available. Further, we demon- 
strate a cross-core Prime+Probe attack without shared 
memory that is applicable in a real-world scenario. 

Figure 11 shows a template matrix of the first T-table 
for all 256 values for plaintext byte p0 and a key that 
is fixed to 0 while the remaining plaintext bytes are 
random. These plots reveal the upper 4 key bits of 
k0 [43, 51]. Thus, in our case the key space is reduced 
to 64 bits after 256–512 encryptions. We consider a first- 
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round attack only, because we aim to demonstrate the 
applicability of these attacks on ARM-based mobile de- 
vices. However, full-key recovery is possible with the 
same techniques by considering more sophisticated at- 
tacks targeting different rounds [47, 54], even for asyn- 
chronous attackers [22, 26]. 

We can exploit the fact that the T-tables are placed on 
a different boundary every time the process is started. By 
restarting the victim application we can obtain arbitrary 
disalignments of T-tables. Disaligned T-tables allow to 
reduce the key space to 20 bits on average and for spe- 
cific disalignments even full-key recovery without a sin- 
gle brute-force computation is possible [51, 53]. We ob- 
served not a single case where the T-tables were aligned. 
Based on the first-round attack matrix in Figure 11, the 
expected number of encryptions until a key byte is iden- 
tified is 1.81 128. Thus, full key recovery is possible 

after 1.81 128 16 = 3707 encryptions by monitoring a 
single address during each encryption. 

 
Real-world cross-core attack on Bouncy Castle. If 
the attacker has no way to share a targeted mem- 
ory region with the victim, Prime+Probe instead of 
Evict+Reload or Flush+Reload can be used. This is the 
case for dynamically generated data or private memory 
of another process. Figure 12 shows the Prime+Probe 
histogram for cache hits and cache misses. We observe a 
higher execution time if the victim accesses a congruent 
memory location. Thus, Prime+Probe can be used for 
a real-world cross-core attack on Bouncy Castle and also 
allows to exploit disaligned T-tables as mentioned above. 

Figure 13: Excerpt of the attack on Bouncy Castle’s AES 
using Prime+Probe. 

In a preprocessing step, the attacker identifies the 
cache sets to be attacked by performing random encryp- 
tions and searching for active cache sets. Recall that the 
cache set (index) is derived directly from the physical ad- 
dress on ARM, i.e., the lowest n bits determine the offset 
within a 2n-byte cache line and the next s bits determine 
one of the 2s cache sets. Thus, we only have to find a 
few cache sets where a T-table maps to in order to iden- 
tify all cache sets required for the attack. On x86 the 
replacement policy facilitates this attack and allows even 
to deduce the number of ways that have been replaced in 
a specific cache set [43]. On ARM the random replace- 
ment policy makes Prime+Probe more difficult as cache 
lines are replaced in a less predictable way. To launch a 
Prime+Probe attack, we apply the eviction strategy and 
the crafted reaccess patterns we described in Section 3.2. 

Figure 13 shows an excerpt of the cache template ma- 
trix resulting from a Prime+Probe attack on one T-table. 
For each combination of plaintext byte and offset we per- 
formed 100000 encryptions for illustration purposes. We 
only need to monitor a single address to obtain the upper 

4 bits of si and, thus, the upper 4 bits of ki = si pi. 
Compared to the Evict+Reload attack from the previous 
section, Prime+Probe requires 3 times as many measure- 
ments to achieve the same accuracy. Nevertheless, our 
results show that an attacker can run Prime+Probe at- 
tacks on ARM CPUs just as on Intel CPUs. 
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 Spy on TrustZone Code Execution 

The ARM TrustZone is a hardware-based security tech- 
nology built into ARM CPUs to provide a secure exe- 
cution environment [4]. This trusted execution environ- 
ment is isolated from the normal world using hardware 
support. The TrustZone is used, e.g., as a hardware- 
backed credential store, to emulate secure elements for 
payment applications, digital rights management as well 
as verified boot and kernel integrity measurements. The 
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0.5 

 
0 

 

 
260 280 300 320 340 

Set number 

services are provided by so-called trustlets, i.e., applica- 
tions that run in the secure world. 

Since the secure monitor can only be called from the 
supervisor context, the kernel provides an interface for 
the userspace to interact with the TrustZone. On the 
Alcatel One Touch Pop 2, the TrustZone is accessible 
through a device driver called QSEECOM (Qualcomm 
Secure Execution Environment Communication) and a 
library libQSEEComAPI.so. The key master trustlet on 
the Alcatel One Touch Pop 2 provides an interface to 
generate hardware-backed RSA keys, which can then be 
used inside the TrustZone to sign and verify signatures. 

Our observations showed that a Prime+Probe at- 
tack on the TrustZone is not much different from a 
Prime+Probe attack on any application in the normal 
world. However, as we do not have access to the source 
code of the TrustZone OS or any trustlet, we only con- 
duct simple attacks.4 We show that Prime+Probe can be 
used to distinguish whether a provided key is valid or not. 
While this might also be observable through the overall 
execution time, we demonstrate that the TrustZone isola- 
tion does not protect against cache attacks from the nor- 
mal world and any trustlet can be attacked. 

We evaluated cache profiles for multiple valid as well 
as 

On the Samsung Galaxy S6, the TrustZone flushes the 
cache when entering or leaving the trusted world. How- 
ever, by performing a Prime+Probe attack in parallel, 
i.e., multiple times while the trustlet performs the corre- 
sponding computations, the same attack can be mounted. 

 
4More sophisticated attacks would be possible by reverse engineer- 

ing these trustlets. 

Figure 14: Mean squared error between the average 
Prime+Probe timings of valid keys and invalid keys on 
the Alcatel One Touch Pop 2. 

7 Countermeasures 

Although our attacks exploit hardware eaknesses, 
software-based countermeasures could impede such at- 
tacks. Indeed, we use unprotected access to system in- 
formation that is available on all Android versions. 

As we have shown, the operating system cannot pre- 
vent access to timing information. However, other in- 
formation supplied by the operating system that facil- 
itates these attacks could be restricted. For instance, 
we use /proc/pid/ to retrieve information about any 
other process on the device, e.g., /proc/pid/pagemap 
is used to resolve virtual addresses to physical ad- 
dresses. Even though access to /proc/pid/pagemap 
and /proc/self/pagemap has been restricted in Linux 
in early 2015, the Android kernel still allows access to 
these resources. Given the immediately applicable at- 
tacks we presented, we stress the urgency to merge the 
corresponding patches into the Android kernel. Further- 
more, we use /proc/pid/maps to determine shared ob- 
jects that are mapped into the address space of a victim. 
Restricting access to procfs to specific privileges or per- 
missions would make attacks harder. We recommend this 
for both the Linux kernel as well as Android. 

We also exploit the fact that access to shared li- 
braries as well as dex and art optimized program bi- 
naries is only partially restricted on the file system 
level. While we cannot retrieve a directory listing of 
/data/dalvik-cache/, all files are readable for any 
process or Android application. We recommend to allow 
read access to these files to their respective owner ex- 
clusively to prevent Evict+Reload, Flush+Reload, and 
Flush+Flush attacks through these shared files. 

In order to prevent cache attacks against AES T-tables, 
hardware instructions should be used. If this is not an op- 
tion, a software-only bit-sliced implementation must be 
employed, especially when disalignment is possible, as it 
is the case in Java. Since OpenSSL 1.0.2 a bit-sliced im- 
plementation is available for devices capable of the ARM 
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NEON instruction set and dedicated AES instructions are 
used on ARMv8-A devices. Cryptographic algorithms 
can also be protected using cache partitioning [34]. How- 
ever, cache partitioning comes with a performance im- 
pact and it can not prevent all attacks, as the number of 
cache partitions is limited. 

We responsibly disclosed our attacks and the pro- 
posed countermeasures to Google and other development 
groups prior to the publication of our attacks. Google 
has applied upstream patches preventing access to 
/proc/pid/pagemap in early 2016 and recommended 
installing the security update in March 2016 [15]. 

 

 
8 Conclusion 

 
In this work we demonstrated the most powerful 
cross-core cache attacks Prime+Probe, Flush+Reload, 
Evict+Reload, and Flush+Flush on default configured 
unmodified Android smartphones. Furthermore, these 
attacks do not require any permission or privileges. In 
order to enable these attacks in real-world scenarios, 
we have systematically solved all challenges that pre- 
vented highly accurate cache attacks on ARM so far. 
Our attacks are the first cross-core and cross-CPU at- 
tacks on ARM CPUs. Furthermore, our attack tech- 
niques provide a high resolution and a high accuracy, 
which allows monitoring singular events such as touch 
and swipe actions on the screen, touch actions on the 
soft-keyboard, and inter-keystroke timings. In addition, 
we show that efficient state-of-the-art key-recovery at- 
tacks can be mounted against the default AES imple- 
mentation that is part of the Java Bouncy Castle crypto 
provider and that cache activity in the ARM TrustZone 
can be monitored from the normal world. 

The presented example attacks are by no means ex- 
haustive and launching our proposed attack against other 
libraries and apps will reveal numerous further ex- 
ploitable information leaks. Our attacks are applicable 
to hundreds of millions of today’s off-the-shelf smart- 
phones as they all have very similar if not identical hard- 
ware. This is especially daunting since smartphones have 
become the most important personal computing devices 
and our techniques significantly broaden the scope and 
impact of cache attacks. 
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[22] GÜ LMEZOGLU,  B.,  INCI,  M.  S.,  APECECHEA,  G.  I.,  EISEN- 
BARTH, T., AND SUNAR, B. A Faster and More Realistic 
Flush+Reload Attack on AES. In Constructive Side-Channel 
Analysis and Secure Design – COSADE (2015), vol. 9064 of 
LNCS, Springer, pp. 111–126. 

[23] HUND, R., WILLEMS, C., AND HOLZ, T. Practical Timing Side 
Channel Attacks against Kernel Space ASLR. In IEEE Sympo- 
sium on Security and Privacy – S&P (2013), IEEE, pp. 191–205. 

[24] IRAZOQUI,   G.,   EISENBARTH,   T.,   AND   SUNAR,   B.    S$A:   A 
Shared Cache Attack that Works Across Cores and Defies VM 
Sandboxing – and its Application to AES. In IEEE Symposium 
on Security and Privacy – S&P (2015), IEEE Computer Society. 

[25] IRAZOQUI, G., EISENBARTH, T., AND SUNAR,   B.   Cross Pro- 
cessor Cache Attacks. In ACM Computer and Communications 
Security – ASIACCS (2016), ACM, pp. 353–364. 

[26] IRAZOQUI, G., INCI, M.   S.,   EISENBARTH,   T.,   AND   SUNAR,   B. 
Wait a Minute! A fast, Cross-VM Attack on AES. In Research 
in Attacks, Intrusions and Defenses Symposium – RAID (2014), 
vol. 8688 of LNCS, Springer, pp. 299–319. 

[27] IRAZOQUI,  G.,  INCI,  M.  S.,  EISENBARTH,  T.,  AND  SUNAR, 
B. Know Thy Neighbor: Crypto Library Detection in Cloud. 
Privacy Enhancing Technologies 1, 1 (2015), 25–40. 

[28] IRAZOQUI, G., INCI,  M.  S.,  EISENBARTH,  T.,  AND  SUNAR,  B. 
Lucky 13 Strikes Back. In ACM Computer and Communications 
Security – ASIACCS (2015), ACM, pp. 85–96. 
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